Hostname: page-component-599cfd5f84-96rnj Total loading time: 0 Render date: 2025-01-07T07:43:24.210Z Has data issue: false hasContentIssue false

Distribution of H2CO Absorption at 4.8 GHz towards M17

Published online by Cambridge University Press:  25 April 2016

F. F. Gardner
Affiliation:
Division of Radiophysics, CSIRO, Sydney
J. B. Whiteoak
Affiliation:
Division of Radiophysics, CSIRO, Sydney

Extract

The complex consisting of the bright HII region M17 (G15.0-0.7) and its associated molecular cloud is well known as a region of active star formation which contains an abundance of many different molecules (see e.g. Lada 1976). For H2CO, observations of the 110 – 111 transition at 4.8 GHz towards the HII region show an intense narrow absorption feature with a radial velocity near + 24 km s−1 superimposed on weak absorption which extends to below +10 km s−1 (Whiteoak and Gardner 1970). According to Whiteoak and Gardner (1974) the latter consists of several features centred at the velocities of +4.7, + 10.4, + 17.9 and +20.3 km s−1. Lada and Chaisson (1975) mapped the absorption around M17 with a 6′ .5 arc beam and concluded that the broad component was associated with the obscuring dust cloud near the HII region while the narrow feature occurred in a foreground cloud. In this paper we present observations made with higher angular resolution and higher sensitivity; they define better the H2CO distribution and its relationship with the extended CO cloud near M17 (Elmegreen et al. 1979).

Type
Contributions
Copyright
Copyright © Astronomical Society of Australia 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Elmergreen, B. G., Lada, C. J., and Dickinson, D. F. Astrophys. J., 230, 415 (1979).Google Scholar
Evans, N. J., Zuckerman, B., Morris, G., and Sato, T. Astrophys. J., 196, 433 (1975).Google Scholar
Gardner, F. F., and McGee, R. X. Astrophys. Lett., 8, 83 (1971).Google Scholar
Gardner, F. F., and Whiteoak, J. B. Astrophys. Lett., 10, 171 (1972).Google Scholar
Gardner, F. F., and Whiteoak, J. B. Mon. Not R. Astron. Soc., 173, 131 (1975).Google Scholar
Goudis, C., and Meaburn, J. Astron. Astrophys., 51, 401 (1976).Google Scholar
Lada, C. J. Astrophys. J. Suppl., 32, 603 (1976).CrossRefGoogle Scholar
Lada, C. J., and Chaisson, E. J. Astrophys., J., 195, 367 (1975).CrossRefGoogle Scholar
Lada, C. J., Dickinson, D. F., and Penfield, H. Astrophys. J., 189, L35 (1974).Google Scholar
Lobert, W., and Goss, W. M. Mon. Not R. Astron. Soc., 183, 119 (1978).Google Scholar
Tucker, K. P., Tomasevich, G. R., and Thaddeus, P. Astrophys. J., 169, 429 (1971).Google Scholar
Whiteoak, J. B., and Gardner, F. F. Astrophys. Lett., 5, 5 (1970).Google Scholar
Whiteoak, J. B., and Gardner, F. F. Astron. Astrophys., 37, 389 (1974).Google Scholar
Whiteoak, J. B., and Gardner, F. F. Mon. Not R. Astron. Soc., 188, 445 (1979).CrossRefGoogle Scholar
Whiteoak, J. B., Gardner, F. F., and Sinclair, M. W. Mon. Not. R. Astron. Soc., 184, 235 (1978).Google Scholar
Wilson, T. L., Fazio, G. G., Jaffe, D., Kleinmann, D., Wright, G. L. and Low, F. J. Astron. Astrophys., 76, 86 (1979).Google Scholar