Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T11:07:38.245Z Has data issue: false hasContentIssue false

Deepest far ultraviolet view of a central field in the Coma cluster by AstroSat UVIT

Published online by Cambridge University Press:  18 October 2022

Smriti Mahajan*
Affiliation:
Department of Physical Sciences, Indian Institute for Science Education and Research Mohali- IISERM, Knowledge City, Manauli, 140306 Punjab, India
Kulinder Pal Singh
Affiliation:
Department of Physical Sciences, Indian Institute for Science Education and Research Mohali- IISERM, Knowledge City, Manauli, 140306 Punjab, India
Joseph E. Postma
Affiliation:
Department of Physics and Astronomy, University of Calgary, 2500 University Dr NW, Calgary, Alberta, T2N 1N4, Canada
Kala G. Pradeep
Affiliation:
Department of Physical Sciences, Indian Institute for Science Education and Research Mohali- IISERM, Knowledge City, Manauli, 140306 Punjab, India
Koshy George
Affiliation:
Ludwig-Maximilians-Universität, Scheinerstr. 1, 81679 Munich, Germany
Patrick Côté
Affiliation:
Herzberg Astronomy and Astrophysics Research Centre, National Research Council of Canada, 5071 W. Saanich Road, Victoria, BC V9E 2E7, Canada
*
Corresponding author: Smriti Mahajan, Email: [email protected]

Abstract

We present analysis of the far ultraviolet (FUV) emission of sources in the central region of the Coma cluster ( $z=0.023$ ) using the data taken by the UVIT aboard the multi-wavelength satellite mission AstroSat. We find a good correlation between the UVIT FUV flux and the fluxes in both wavebands of the Galex mission, for the common sources. We detect stars and galaxies, amongst which the brightest ( $r \lesssim 17$ mag) galaxies in the field of view are mostly members of the Coma cluster. We also detect three quasars ( $z = 0.38, 0.51, 2.31$ ), one of which is likely the farthest object observed by the UVIT so far. In almost all the optical and UV colour-colour and colour-magnitude planes explored in this work, the Coma galaxies, other galaxies and bright stars could be separately identified, but the fainter stars and quasars often coincide with the faint galaxies. We have also investigated galaxies with unusual FUV morphology which are likely to be galaxies experiencing ram-pressure stripping in the cluster. Amongst others, two confirmed cluster members which were not investigated in the literature earlier, have been found to show unusual FUV emission. All the distorted sources are likely to have fallen into the cluster recently, and hence have not virialised yet. A subset of our data have optical spectroscopic information available from the archives. For these sources ( ${\sim} 10\%$ of the sample), we find that 17 galaxies identify as star-forming, 18 as composite and 13 as host galaxies for active galactic nuclei, respectively on the emission-line diagnostic diagram.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5Google Scholar
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393Google Scholar
Bianchi, L. 2011, Ap&SS, 335, 51Google Scholar
Bravo-Alfaro, H., Cayatte, V., van Gorkom, J. H., & Balkowski, C. 2000, AJ, 119, 580Google Scholar
Calzetti, D., Armus, L., Bohlin, R. C., Kinney, A. L., Koornneef, J., & Storchi-Bergmann, T. 2000, ApJ, 533, 682Google Scholar
Chen, H., et al. 2020, MNRAS, 496, 4654Google Scholar
Cortese, L., Gavazzi, G., Iglesias-Paramo, J., Boselli, A., & Carrasco, L. 2003, A&A, 401, 471Google Scholar
Cramer, W. J., Kenney, J. D. P., Sun, M., Crowl, H., Yagi, M., Jáchym, P., Roediger, E., & Waldron, W. 2019, ApJ, 870, 63Google Scholar
Donas, J., Milliard, B., & Laget, M. 1991, A&A, 252, 487Google Scholar
Donas, J., Milliard, B., & Laget, M. 1995, A&A, 303, 661Google Scholar
Finoguenov, A., Briel, U. G., & Henry, J. P. 2003, A&A, 410, 777Google Scholar
Garnett, R., Ho, S., Bird, S., & Schneider, J. 2017, MNRAS, 472, 1850Google Scholar
George, K., et al. 2019a, MNRAS, 487, 3102Google Scholar
George, K., Joseph, P., Mondal, C., Subramanian, S., Subramaniam, A., & Paul, K. T. 2019b, A&A, 621, L4Google Scholar
Ginsburg, A., et al. 2019, AJ, 157, 98Google Scholar
Godwin, J. G., Metcalfe, N., & Peach, J. V. 1983, MNRAS, 202, 113Google Scholar
Hammer, D., et al. 2010, ApJS, 191, 143Google Scholar
Jáchym, P., et al. 2017, ApJ, 839, 114Google Scholar
Kauffmann, G., et al. 2003, MNRAS, 346, 1055Google Scholar
Kennicutt Robert, C. J. 1998, ARA&A, 36, 189Google Scholar
Kewley, L. J., Dopita, M. A., Sutherland, R. S., Heisler, C. A., & Trevena, J. 2001, ApJ, 556, 121Google Scholar
Kumar, A., et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, ed. Takahashi, T., Murray, S. S., & J.-W. A. den Herder, p. 84431N (arXiv:1208.4670), doi: 10.1117/12.924507Google Scholar
Lansbury, G. B., Lucey, J. R., & Smith, R. J. 2014, MNRAS, 439, 1749Google Scholar
Mahajan, S., Ashby, M. L. N., Willner, S. P., Barmby, P., Fazio, G. G., Maragkoudakis, A., Raychaudhury, S., & Zezas, A. 2019, MNRAS, 482, 560Google Scholar
Mahajan, S., Haines, C. P., & Raychaudhury, S., 2010, MNRAS, 404, 1745Google Scholar
Mendel, J. T., Simard, L., Palmer, M., Ellison, S. L., & Patton, D. R. 2014, ApJS, 210, 3Google Scholar
Miller, N. A., Hornschemeier, A. E., & Mobasher, B. 2009, AJ, 137, 4436Google Scholar
Neumann, D. M., Lumb, D. H., Pratt, G. W., & Briel, U. G. 2003, A&A, 400, 811Google Scholar
Nisbet, D. M., & Best, P. N. 2016, MNRAS, 455, 2551Google Scholar
Peluso, G., et al. 2022, ApJ, 927, 130Google Scholar
Poggianti, B. M., Bridges, T. J., Komiyama, Y., Yagi, M., Carter, D., Mobasher, B., Okamura, S., & Kashikawa, N. 2004, ApJ, 601, 197Google Scholar
Postma, J. E., & Leahy, D. 2017, PASP, 129, 115002Google Scholar
Postma, J. E., & Leahy, D. 2020, PASP, 132, 054503Google Scholar
Postma, J. E., & Leahy, D. 2021, JApA, 42, 30Google Scholar
Rines, K., Geller, M. J., Kurtz, M. J., & Diaferio, A. 2003, AJ, 126, 2152Google Scholar
Roberts, I. D., & Parker, L. C. 2020, MNRAS, 495, 554Google Scholar
Salim, S., et al. 2016, ApJS, 227, 2Google Scholar
Salim, S., Boquien, M., & Lee, J. C., 2018, ApJ, 859, 11Google Scholar
Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103Google Scholar
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525Google Scholar
Singh, K. P., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, ed. Takahashi, T., J.-W. A. den Herder, & M. Bautz, p. 91441S, doi: 10.1117/12.2062667Google Scholar
Smith, R. J., et al. 2010, MNRAS, 408, 1417Google Scholar
Takase, B., & Miyauchi-Isobe, N. 1993, PNAOJ, 3, 169Google Scholar
Tandon, S. N., et al. 2017, AJ, 154, 128Google Scholar
Tandon, S. N., et al. 2020, AJ, 159, 158Google Scholar
Taylor, M. B. 2005, in Astronomical Society of the Pacific Conference Series, Vol. 347, Astronomical Data Analysis Software and Systems XIV, ed. Shopbell, P., Britton, M., & Ebert, R., 29Google Scholar
Teimoorinia, H., Ellison, S. L., & Patton, D. R., 2017, MNRAS, 464, 3796Google Scholar
Toba, Y., et al. 2014, ApJ, 788, 45Google Scholar
Yagi, M., Komiyama, Y., Yoshida, M., Furusawa, H., Kashikawa, N., Koyama, Y., & Okamura, S. 2007, ApJ, 660, 1209Google Scholar
Yagi, M., et al. 2010, AJ, 140, 1814Google Scholar
Yagi, M., Koda, J., Komiyama, Y., & Yamanoi, H. 2016, ApJS, 225, 11Google Scholar
Yoshida, M., et al. 2008, ApJ, 688, 918Google Scholar
Supplementary material: File

Mahajan et al. supplementary material

Mahajan et al. supplementary material

Download Mahajan et al. supplementary material(File)
File 90 KB