Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-22T21:27:50.305Z Has data issue: false hasContentIssue false

Compton Scattering of Fe Kα Lines from Accreting White Dwarfs

Published online by Cambridge University Press:  05 March 2013

Zdenka Kuncic*
Affiliation:
School of Physics, University of Sydney, Sydney NSW 2006, Australia
Kinwah Wu
Affiliation:
Mullard Space Science Laboratory, University College London, Holmbury St Mary, RH5 6NT, UK
Jason G. Cullen
Affiliation:
ADI Ltd, Canberra ACT 2612, Australia
*
DCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Compton scattering in the bulk accretion flow of the accretion column in magnetic cataclysmic variables can significantly shift photon energies in the X-ray emission lines resulting from accretion shocks. In particular, Compton recoil can potentially broaden the 6.7 and 6.97 keV Fe Kα emission lines produced in the post-shock region, and contaminate the fluorescent 6.4 keV neutral Fe Kα line reflected off the white dwarf surface. We present nonlinear Monte Carlo simulations demonstrating these effects, and we discuss the interpretation of observed Fe Kα linewidths in magnetic cataclysmic variables in light of these new results. The implications for other accreting compact objects are also discussed.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2005

References

Cropper, M. 1990, SSRv, 54, 195 Google Scholar
Cropper, M., Wu, K., & Ramsay, G. 2000, NewAR, 44, 57 Google Scholar
Cropper, M., Wu, K., Ramsay, G., & Kocabiyik, A. 1999, MNRAS, 306, 684 Google Scholar
Cullen, J. G. 2001a, PhD Thesis, University of Sydney Google Scholar
Cullen, J. G. 2001b, JCoPh, 173, 175 Google Scholar
Fujimoto, R. 1998, PhD Thesis, University of Tokyo Google Scholar
Hellier, C., Mukai, K., & Osborne, J. P. 1998, MNRAS, 297, 526 CrossRefGoogle Scholar
Hellier, C., & Mukai, K. 2004, MNRAS, 352, 1037 Google Scholar
Hua, X. 1997, JCoPh, 11, 660 Google Scholar
Ishida, M. 1991, PhD Thesis, University of Tokyo Google Scholar
Kawrakow, I., & Rogers, D. W. O. 2001, Proc. Monte Carlo 2000 Conf., eds. A. Kling, et al. (Berlin Heidelberg: Springer-Verlag), 135 Google Scholar
Koester, D. 1987, ApJ, 322, 852 Google Scholar
Lamb, D. Q., & Masters, A. R. 1979, ApJ, 234, L117 Google Scholar
Matsumoto, M., & Nishimura, T. 1998, ACM Trans. on Modelling and Computer Simulation, 8(1), 3 Google Scholar
Matt, G. 2004, A&A, 423, 495 Google Scholar
Nelson, W. R., Hirayama, H., & Rogers, D. W. O. 1985, SLAC Report 265, Standford Linear Accelerator CenterGoogle Scholar
Pozdnyakov, L. A., Sobol, I. M., & Sunyaev, R. A. 1977, SvA, 21, 708 Google Scholar
Pozdnyakov, L. A., Sobol, I. M., & Sunyaev, R. A. 1983, ASPRv, 2, 189 Google Scholar
Rybicki, G. B., & Lightman, A. R. 1979, Radiative Processes in Astrophysics (New York: Wiley)Google Scholar
Stern, B., Begelman, M., Sikora, M., & Svensson, R. 1995, MNRAS, 272, 291 CrossRefGoogle Scholar
Saxton, C. J., Wu, K., & Pongracic, H. 1997, PASA, 14, 164 Google Scholar
Terada, Y., et al. 2001, MNRAS, 328, 112 Google Scholar
Warner, B. 1995, Cataclysmic Variable Stars (Cambridge: Cambridge University Press)Google Scholar
Wu, K. 1999, in ASP Conf. Ser. 157, Annapolis Workshop on Magnetic Cataclysmic Variables, eds. C. Hellier, & K. Mukai (San Francisco: ASP), 325 Google Scholar
Wu, K. 2000, SSRv, 93, 611 Google Scholar
Wu, K., Chanmugam, G., & Shaviv, G. 1994, ApJ, 426, 664 Google Scholar
Wu, K., Cropper, M., & Ramsay, G. 2001, MNRAS, 327, 208 Google Scholar