Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T17:58:31.946Z Has data issue: false hasContentIssue false

Asymptotic-Giant-Branch Models at Very Low Metallicity

Published online by Cambridge University Press:  05 March 2013

S. Cristallo*
Affiliation:
Osservatorio Astronomico di Teramo (INAF), via Maggini 64100 Teramo, Italy
L. Piersanti
Affiliation:
Osservatorio Astronomico di Teramo (INAF), via Maggini 64100 Teramo, Italy
O. Straniero
Affiliation:
Osservatorio Astronomico di Teramo (INAF), via Maggini 64100 Teramo, Italy
R. Gallino
Affiliation:
Dipartimento di Fisica Generale, Universitá di Torino, via P. Giuria 1, 10125 Torino, Italy
I. Domínguez
Affiliation:
Departamento de Física Teórica y del Cosmos, Universidad de Granada, 18071 Granada, Spain
F. Käppeler
Affiliation:
Forschungszentrum Karlsruhe, Institut für Kernphysik Postfach 3460, D-76021 Karlsruhe, Germany
*
ECorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we present the evolution of a low-mass model (initial mass M = 1.5 M) with a very low metal content (Z = 5 × 10−5, equivalent to [Fe/H] = –2.44). We find that, at the beginning of the Asymptotic Giant Branch (AGB) phase, protons are ingested from the envelope in the underlying convective shell generated by the first fully developed thermal pulse. This peculiar phase is followed by a deep third dredge-up episode, which carries to the surface the freshly synthesized 13C, 14N and 7Li. A standard thermally pulsing AGB (TP-AGB) evolution then follows. During the proton-ingestion phase, a very high neutron density is attained and the s process is efficiently activated. We therefore adopt a nuclear network of about 700 isotopes, linked by more than 1200 reactions, and we couple it with the physical evolution of the model. We discuss in detail the evolution of the surface chemical composition, starting from the proton ingestion up to the end of the TP-AGB phase.

Type
Theory, Evolution and Models
Copyright
Copyright © Astronomical Society of Australia 2009

References

Abia, C. & Rebolo, R. 1989, ApJ, 347, 186 Google Scholar
Aoki, W. et al., 2008, ApJ, 678, 1351 Google Scholar
Beers, T. & Christlieb, N. 2005, ARA&A, 43, 531 Google Scholar
Bisterzo, S. et al., 2008, PASA, in pressGoogle Scholar
Busso, M., Gallino, R., Lambert, D. L., Travaglio, C. & Smith, V. V., 2001, ApJ, 557, 802 Google Scholar
Campbell, S. W. & Lattanzio, J. C. 2008, A&A, 490, 769 Google Scholar
Chieffi, A., Limongi, M. & Straniero, O. 1998, ApJ, 502, 737 Google Scholar
Chieffi, A., Domínguez, I., Limongi, M. & Straniero, O. 2001, ApJ, 554, 1159 CrossRefGoogle Scholar
Cristallo, S., Straniero, O., Lederer, M. T. & Aringer, B. 2007, ApJ, 667, 489 CrossRefGoogle Scholar
Cristallo, S., Straniero, O., Gallino, R., Piersanti, L., Domínguez, I. & Lederer, M. T. 2009, ApJ, 696, 797 Google Scholar
Gratton, R. G., Carretta, E., Matteucci, F. & Sneden, C. 2000, A&A, 358, 671 Google Scholar
Fujimoto, M. Y., Ikeda, Y. & Iben, I. Jr., 2000, ApJ, 529, 25 Google Scholar
Hollowell, D., Iben, I. Jr. & Fujimoto, M. Y. 1990, ApJ, 351, 245L CrossRefGoogle Scholar
Iben, I. Jr., 1977, ApJ, 217, 788 Google Scholar
Iwamoto, N., Kajino, T., Mathews, G. J., Fujimoto, M. Y. & Aoki, W., 2004, ApJ, 602, 377 CrossRefGoogle Scholar
Lau, H. B., Stancliffe, R. J. & Tout, C. A. 2009, MNRAS, in press (astro-ph/0903.2324)Google Scholar
Lebzelter, T., Lederer, M. T., Cristallo, S., Hinkle, K. H., Straniero, O. & Aringer, B. 2008, A&A, 486, 511 Google Scholar
Lodders, K. 2003, ApJ, 591, 1220 Google Scholar
Lucatello, S., Tsangarides, S., Beers, T. C., Carretta, E., Gratton, R. G. & Ryan, S. G. 2005, ApJ, 625, 825L Google Scholar
Roederer, I. U. et al., 2008, ApJ, 679, 1549 CrossRefGoogle Scholar
Straniero, O., Cristallo, S., Gallino, R. & Domínguez, I. 2004, MmSAI, 75, 665 Google Scholar
Straniero, O., Gallino, R. & Cristallo, S. 2006, NuPhA, 777, 311 Google Scholar
Spite, M. & Spite, F. 1982, A&A, 115, 357 Google Scholar
Stancliffe, R. J. & Glebbeek, E. 2008, MNRAS, 389, 1828 Google Scholar
Suda, T., Aikawa, M., Machida, M. N., Fujimoto, M. Y. & Iben, I. Jr., 2004, ApJ, 611, 476 Google Scholar
Suda, T. et al., 2008, PASJ, 60, 1159 Google Scholar
Sugimoto, D. 1971, PThPh, 45, 761 Google Scholar
Thompson, I. B. et al., 2008, ApJ, 677, 556 Google Scholar
Woodward, P., Herwig, F., Porter, D., Fuchs, T., Nowatzki, A. & Pignatari, M. 2008, AIPC, 990, 300 Google Scholar