Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T21:57:50.876Z Has data issue: false hasContentIssue false

The Angular Diameter and Fundamental Parameters of Sirius A

Published online by Cambridge University Press:  02 January 2013

J. Davis
Affiliation:
Deceased. Formerly of Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia
M. J. Ireland
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia
J. R. North
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia
J. G. Robertson*
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia
W. J. Tango
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia
P. G. Tuthill
Affiliation:
Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia
*
CCorresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Sydney University Stellar Interferometer (SUSI) has been used to make a new determination of the angular diameter of Sirius A. The observations were made at an effective wavelength of 694.1 nm and the new value for the limb-darkened angular diameter is 6.048 ± 0.040 mas (± 0.66%). This new result is compared with previous measurements and is found to be in excellent agreement with a conventionally calibrated measurement made with the European Southern Observatory's Very Large Telescope Interferometer (VLTI) at 2.176 μm (but not with a second globally calibrated VLTI measurement). A weighted mean of the SUSI and first VLTI results gives the limb-darkened angular diameter of Sirius A as 6.041 ± 0.017 mas (± 0.28%). Combination with the Hipparcos parallax gives the radius equal to 1.713 ± 0.009 R. The bolometric flux has been determined from published photometry and spectrophotometry and, combined with the angular diameter, yields the emergent flux at the stellar surface equal to (5.32 ± 0.14) × 108 W m−2 and the effective temperature equal to 9845 ± 64 K. The luminosity is 24.7 ± 0.7 L.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2011

References

Aller, L. H., Faulkner, D. J. & Norton, R. H., 1966, ApJ, 144, 1073CrossRefGoogle Scholar
Bessel, F. W., 1844, MNRAS, 6, 136Google Scholar
Bessell, M. S., Castelli, F. & Plez, B., 1998, A&A, 333, 231Google Scholar
Bless, R. C., Code, A. D. & Fairchild, E. T., 1976, ApJ, 203, 410CrossRefGoogle Scholar
Code, A. D., Davis, J., Bless, R. C. & Hanbury Brown, R., 1976, ApJ, 203, 417CrossRefGoogle Scholar
Code, A. D., Holm, A. V. & Bottemiller, R. L., 1980, ApJS, 43, 501CrossRefGoogle Scholar
Code, A. D. & Meade, M. R., 1979, ApJS, 39, 195CrossRefGoogle Scholar
Cohen, M., Walker, R. G., Barlow, M. J. & Deacon, J. R., 1992, AJ, 104, 1650CrossRefGoogle Scholar
Cousins, A. W., 1980, SAAO Circ., 1, 234Google Scholar
Davis, J. & Tango, W. J., 1986, Nature, 323, 234CrossRefGoogle Scholar
Davis, J. & Webb, R. J., 1974, MNRAS, 168, 163CrossRefGoogle Scholar
Davis, J., Tango, W. J. & Booth, A. J., 2000, MNRAS, 318, 387CrossRefGoogle Scholar
Davis, J., Tango, W. J., Booth, A. J., ten Brummelaar, T. A., Minard, R. A. & Owens, S. M., 1999, MNRAS, 303, 773CrossRefGoogle Scholar
Davis, J., et al. , 2007a, PASA, 24, 138CrossRefGoogle Scholar
Davis, J., et al. , 2007b, PASA, 24, 151CrossRefGoogle Scholar
Engels, D., Sherwood, W. A., Wamsteker, W. & Schultz, G. V., 1981, A&A Supp., 45, 5Google Scholar
Glass, I. S., 1974, MNASSA, 33, 53Google Scholar
Gutierrez-Moreno, A., Moreno, H. & Stock, J., 1968, Univ. Chile Dept. Astr. Pub., 8, 127Google Scholar
Hanbury Brown, R. & Twiss, R. Q., 1956, Nature, 178, 1046CrossRefGoogle Scholar
Hanbury Brown, R. & Twiss, R. Q., 1958, Proc. Roy. Soc. (London), A, 248, 222Google Scholar
Hanbury Brown, R., Davis, J. & Allen, L. R., 1967, MNRAS, 137, 375CrossRefGoogle Scholar
Hanbury Brown, R., Davis, J. & Allen, L. R., 1974, MNRAS, 167, 121CrossRefGoogle Scholar
Hayes, D. S., 1985, in IAU Symp. 111, Calibration of Fundamental Stellar Quantities, Eds. Hayes, D. S. Pasinetti, L. E. & Davis Philip, A. G. (Dordrecht, Reidel), 225CrossRefGoogle Scholar
Johnson, H. L., 1966, ARA&A, 4, 193Google Scholar
Johnson, H. L. & Mitchell, R. I., 1975, Rev. Mex. Astron. Astrofis., 1, 299Google Scholar
Johnson, H. L., Mitchell, R. I., Iriarte, B. & Wisniewski, W. Z., 1966, Comm. Lunar and Plan. Lab., 4, 99Google Scholar
Kervella, P., Thévenin, F., Morel, P., Bordé, P. & Di Folco, E., 2003, A&A, 408, 681Google Scholar
Kiehling, R., 1987, A&AS, 69, 465Google Scholar
Kurucz, R. L., 1993a, Limbdarkening for 2 km s−1 grid (No. 13): [ +1.0] to [−1.0]. Kurucz CD-ROM No. 16Google Scholar
Kurucz, R. L., 1993b, Limbdarkening for 2 km s−1 grid (No. 13): [+0.0] to [−5.0]. Kurucz CD-ROM No. 17Google Scholar
Mégessier, C., 1995, A&A, 296, 771Google Scholar
Mozurkewich, D., et al. , 2003, AJ, 126, 2502CrossRefGoogle Scholar
Ochsenbein, F., Bauer, P. & Marcout, J., 2000, A&AS, 143, 221Google Scholar
Oke, J. B. & Schild, R. E., 1970, ApJ, 161, 1015CrossRefGoogle Scholar
Richichi, A., Percheron, I. & Davis, J., 2009, MNRAS, 399, 399Google Scholar
Sánchez-Blázquez, et al. , 2006, MNRAS, 371, 703Google Scholar
Schild, R., Peterson, D. M. & Oke, J. B., 1971, ApJ, 166, 95CrossRefGoogle Scholar
Tango, W. J. & Davis, J., 2002, MNRAS, 333, 642CrossRefGoogle Scholar
Thompson, G. I., Nandy, K., Jamar, C., Monfils, A., Houziaux, L., Carnochan, D. J. & Wilson, R., 1978, Catalogue of stellar ultraviolet fluxes. A compilation of absolute stellar fluxes measured by the Sky Survey Telescope (S2/68) aboard the ESRO satellite TD-1, 1978csuf.book, unknownGoogle Scholar
van Leeuwen, F., 2007, Hipparcos, the new Reduction of the Raw Data (Springer)CrossRefGoogle Scholar
Wamsteker, W., 1981, A&A, 97, 329Google Scholar