Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-03T12:23:11.507Z Has data issue: false hasContentIssue false

AMS Applications in Nuclear Astrophysics: New Results for 13C(n,γ) 14C and 14N(n,p) 14C

Published online by Cambridge University Press:  02 January 2013

A. Wallner*
Affiliation:
VERA Laboratory, Faculty of Physics, University of Vienna, Austria Department of Nuclear Physics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia
K. Buczak
Affiliation:
VERA Laboratory, Faculty of Physics, University of Vienna, Austria
I. Dillmann
Affiliation:
Karlsruhe Institute of Technology (KIT), Campus Nord, Institut für Kernphysik, Karlsruhe, Germany
J. Feige
Affiliation:
VERA Laboratory, Faculty of Physics, University of Vienna, Austria
F. Käppeler
Affiliation:
Karlsruhe Institute of Technology (KIT), Campus Nord, Institut für Kernphysik, Karlsruhe, Germany
G. Korschinek
Affiliation:
Physik Department der TechnischenUniversität München, Germany
C. Lederer
Affiliation:
VERA Laboratory, Faculty of Physics, University of Vienna, Austria
A. Mengoni
Affiliation:
International Atomic Energy Agency, Nuclear Data Section, Austria
U. Ott
Affiliation:
Max-Planck-Institute for Chemistry, Hahn-Meitner-Weg 1, D-55128 Mainz, Germany
M. Paul
Affiliation:
Racah Institute of Physics, Hebrew University, Jerusalem, Israel
G. Schätzel
Affiliation:
VERA Laboratory, Faculty of Physics, University of Vienna, Austria
P. Steier
Affiliation:
VERA Laboratory, Faculty of Physics, University of Vienna, Austria
H. P. Trautvetter
Affiliation:
Institut für Experimentalphysik, Ruhr-Universitaet Bochum, D-44780 Bochum, Germany
*
ICorresponding author. Email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The technique of accelerator mass spectrometry (AMS) offers a complementary tool for studying long-lived radionuclides in nuclear astrophysics: (1) as a tool for investigating nucleosynthesis in the laboratory; and (2) via a direct search of live long-lived radionuclides in terrestrial archives as signatures of recent nearby supernova-events. A key ingredient to our understanding of nucleosynthesis is accurate cross-section data. AMS was applied for measurements of the neutron-induced cross sections 13C(n,γ) and 14N(n,p), both leading to the long-lived radionuclide 14C. Solid samples were irradiated at Karlsruhe Institute of Technology with neutrons closely resembling a Maxwell–Boltzmann distribution for kT = 25 keV, and with neutrons of energies between 123 and 178 keV. After neutron activation the amount of 14C nuclides in the samples was measured by AMS at the VERA (Vienna Environmental Research Accelerator) facility. Both reactions, 13C(n,γ)14C and 14N(n,p)14C, act as neutron poisons in s-process nucleosynthesis. However, previous experimental data are discordant. The new data for both reactions tend to be slightly lower than previous measurements for the 25 keV Maxwell–Boltzmann energy distribution. For the higher neutron energies no previous data did exist for 13C(n,γ), but model calculations indicated a strong resonance structure between 100 and 300 keV which is confirmed by our results. Very limited information is available for 14N(n,p) at these energies. Our new data at 123 and 178 keV suggest lower cross sections than expected from previous experiments and data evaluations.

Type
Research Front: Astronomy with Radioactivities
Copyright
Copyright © Astronomical Society of Australia 2012

References

Arazi, A., et al. , 2006, PhRvC, 74, 025802Google Scholar
Bishop, J. & Egli, R., 2012, Icar, 212, 960CrossRefGoogle Scholar
Brehm, K., et al. , 1988, ZA, 330, 167Google Scholar
Dillmann, I., et al. , 2009, PhRvC, 79, 065805Google Scholar
Dillmann, I., et al. , 2010, NIMPB, 268, 1283Google Scholar
Ellis, J., Fields, B. D. & Schramm, D. N., 1996, ApJ, 470, 1227CrossRefGoogle Scholar
Chadwick, M. B., et al. , 2011, NDS, 112, 2887Google Scholar
Feige, J., et al. , 2012, PASA, Special Issue on Astronomy with RadioactivitiesGoogle Scholar
Gibbons, J. H. & Macklin, R. L., 1959, PhRv, 114, 571Google Scholar
Herndl, H., Hofinger, R., Jan, J., Oberhummer, H., Görres, J., Wiescher, M., Thielemann, F. K. & Brown, B. A., 1999, PhRvC, 60, 064614Google Scholar
Iliadis, C., 2007, Nuclear Physics of Stars (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA), 518Google Scholar
Johnson, C. H. & Barschall, H. H., 1950, PhRv, 80, 818Google Scholar
Käppeler, F., Gallino, R., Bisterzo, S. & Aoki, W., 2011, RvMP, 83, 157Google Scholar
Kii, T., Shima, T., Sato, H., Baba, T. & Nagai, Y., 1999, PhRvC, 59, 3397Google Scholar
Knie, K., et al. , 2004, PhRvL, 93, 171103Google Scholar
Koehler, P. E. & O'Brien, H. A., 1989, PhRvC, 39, 1655Google Scholar
Korschinek, G., et al. , 1996, Radiocarbon, 38, 68Google Scholar
Lugaro, M., et al. , 2004, ApJ, 615, 934CrossRefGoogle Scholar
Lugaro, M., et al. , 2008, A&A, 484, 27Google Scholar
Nassar, H., et al. , 2004, NuPhA, 746, 613Google Scholar
Nassar, H., et al. , 2005a, PhRvL, 94, 092504Google Scholar
Nassar, H., et al. , 2005b, NuPhA, 758, 411Google Scholar
Nassar, H., et al. , 2006, PhRvL, 96, 041102Google Scholar
Ott, U., et al. , 2012, PASA, Special Issue on Astronomy with RadioactivitiesGoogle Scholar
Paul, M., et al. , 2001, ApJL, 558, 133Google Scholar
Paul, M., et al. , 2003a, NuPhA, 718, 239Google Scholar
Paul, M., et al. , 2003b, NuPhA, 719, C29Google Scholar
Paul, M., et al. , 2007, JRNC, 272, 243Google Scholar
Raman, S., Igashira, M., Dozono, Y., Kitazawa, H. & Lynn, J. E., 1990, PhRvC, 41, 458Google Scholar
Ratynski, W. & Käppeler, F., 1988, PhRvC, 37, 595Google Scholar
Reifarth, R., Heil, M., Käppeler, F. & Plag, R., 2009, NIMPA, 608, 139Google Scholar
Rugel, G., et al. , 2007, NIMPB, 259, 683Google Scholar
Rugel, G., et al. , 2009, PhRvL, 103, 7Google Scholar
Sanami, T., et al. , 1997, NIMPA, 394, 368Google Scholar
Shima, T., Watanabe, K., Irie, T., Sato, H. & Nagai, Y., 1995, NIMPA, 356, 347Google Scholar
Shima, T., Okazaki, F., Kikuchi, T., Kobayashi, T., Kii, T., Baba, T., Nagai, Y. & Igashira, M., 1997, NuPhA, 621, 231Google Scholar
Steier, P., et al. , 2005, NIMPB, 240, 445Google Scholar
Wallner, A., 2010, NIMPB, 268, 1277Google Scholar
Wallner, C., Faestermann, T., Gerstmann, U., Knie, K., Korschinek, G., Lierse, C. & Rugel, G., 2004, NewAR, 48, 145CrossRefGoogle Scholar
Wallner, A., et al. , 2007, NIMPB, 259, 677Google Scholar
Wallner, A., et al. , 2008, JPhG, 35, 014018Google Scholar
Wallner, A., et al. , 2012, NIMPB, in pressGoogle Scholar