Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T18:29:20.199Z Has data issue: false hasContentIssue false

Magnetic White Dwarfs in Binary Systems

Published online by Cambridge University Press:  25 April 2016

D.T. Wickramasinghe*
Affiliation:
Department of Mathematics, A.N.U.

Extract

The cataclysmic variables are close binary systems consisting of a late type star and a collapsed star, usually a white dwarf, undergoing mass exchange. According to the standard model, the late type star (the secondary) fills its Roche lobe and material escaping from the inner Lagrangian point is transferred to the primary by means of a mass transfer stream and an accretion disc. The spectroscopic and photometric properties of most cataclysmic variables can be understood in terms of radiation from the various components of such a system, with the accretion disc usually dominating in the optical region (see Warner (1976) for a review). However, recently a new class of cataclysmic variables has been discovered with distinctive optical properties that are inexplicable in terms of the standard model. These systems known as the AM Herculis type variables have provided the first direct evidence for the presence of strong magnetic fields in the white dwarfs of some cataclysmic variables. We present here a review of some of the important properties of these variables with emphasis on the unique system VV Puppis which has provided the first unequivocal evidence for high harmonic cyclotron radiation from white dwarfs.

Type
Invited Papers
Copyright
Copyright © Astronomical Society of Australia 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, P.C., Rao, A.R., Rieglev, G.R., Picles, A.J., and Visvanathan, N.W., IAUC 3649 (1982).Google Scholar
Bekefei, G., Radiation Processes in Plasmas (New York, Wiley 1966).Google Scholar
Bailey, J., Hough, J.H., Axon, D.J., Gatley, I., Lee, T.J., Szkody, P., Stokes, G., and Berriman, G., Mon. Not. R. Astron Soc, 199, 801 (1982).CrossRefGoogle Scholar
Bergh, R.A., and Duthie, J.G., Astrophys. J., 211, 859 (1977).CrossRefGoogle Scholar
Bierman, P., Kuhr, H., Liebert, J.,Stockman, H., Strittmatter, P.A., and Tapia, S., IAUC, 3680 (1982).Google Scholar
Boley, F., Johns, M., Maher, S., IAUC 3324 (1982).Google Scholar
Chaumugam, G., and Dulk, G.A., Astrophys. J., 244, 569 (1981).CrossRefGoogle Scholar
Chaumugam, G., and Wagner, R., Astrophys. J. Letts, 213, L13 (1977).CrossRefGoogle Scholar
Chaumugam, G., and Wagner, R., Astrophys. J., 222, 641 (1978).CrossRefGoogle Scholar
Drummond, W.E., and Rosenbluth, M.N., Phys. Fluids, 6, 276 (1963).CrossRefGoogle Scholar
Fabian, A.C., Pringle, J.E., and Rees, , M.J., , Mon. Not. R. Astron. Soc, 175, 43 (1976).CrossRefGoogle Scholar
Fabianno, G., Hartmann, L., Raymond, J., Steiner, J., Branduardi-Raymont, G., and Matilsky, T., Astrophys. J., 243, 911 (1981).CrossRefGoogle Scholar
King, A.R., and Lasota, J.P., Mon. Not. R. Astron. Soc, 188, 653 (1979).CrossRefGoogle Scholar
King, A.R., and Lasota, J.P., Mon. Not. R. Astron. Soc, 191, 721 (1980).CrossRefGoogle Scholar
Krzeminsky, W., and Serkowski, K., Astrophys. J. Letts, 216, 645 (1977).Google Scholar
Lamb, D.Q., and Masters, A.R., Astrophys. J. Letts, 234, L117 (1979).CrossRefGoogle Scholar
Latham, D., Liebert, J., and Steiner, J., Astrophys. J., 246, 919(1981).CrossRefGoogle Scholar
Liebert, J., Stockman, H.S., Astrophys. J., 229, 652 (1979).CrossRefGoogle Scholar
Liebert, J., Stockman, H.S., Angel, J.R.P., Woolf, N.J., Hege, K., and Margon, B., Astrophys. J., 225, 201 (1978).CrossRefGoogle Scholar
Liebert, J., Stockman, H.S., Williams, R.E., Tapia, S., Green, R.F., Rautenkranz, D., and Ferguson, D.H., Astrophys. J., 256, 594 (1982).CrossRefGoogle Scholar
Masters, A.R., Pringle, J.E., Fabian, A.C., and Rees, M.J., Mon. Not. R. Astron. Soc, 178, 501 (1977).CrossRefGoogle Scholar
Mason, K., Middleditch, F., Cordova, F., Jensen, K., Reichert, G., Bowyer, S., Murdin, P., and Clark, D., IAUC 3684 (1982).Google Scholar
Meggitt, S.M.A., and Wickramasinghe, D.T., Mon. Not. R. Astron. Soc, 198, 71 (1982).CrossRefGoogle Scholar
Raymond, J.C., Black, J.H., Davis, R.J., Dupree, A.K., Gursky, H., Harman, J., and Matlisky, T.A., Astrophys. J., 230, 695 (1979).CrossRefGoogle Scholar
Schneider, D.P., and Young, P., Astrophys. J., 238, 946 (1980).CrossRefGoogle Scholar
Schneider, D.P., and Young, P., Astrophys. J., 240, 871 (1980).Google Scholar
Stockman, H.S., Astrophys. J. Letts, 218, L57 (1977).CrossRefGoogle Scholar
Stockman, H.S., Liebert, J., and Bond, H.E., IAU Coll No 53, (eds van Horn, H., and Weidemann, V.,Univ. of Rochester Press 1979).Google Scholar
Stockman, H.S., Schmidt, G.D., Angel, J.R.P., Liebert, J., Tapia, S., Beaver, E.A., Astrophys. J., 217, 815 (1977).CrossRefGoogle Scholar
Stockman, H.S., Foltz, C., Tapia, S., Schmidt, G., and Grandi, G., IAUC 3696 (1982).Google Scholar
Swank, J., Lampton, M., Boldt, E., Holt, S., and Serlemitsos, P., Astrophys. J., 216, L17 (1977).CrossRefGoogle Scholar
Tapia, S., Astrophys. J. Letts, 212, L125 (1977a).CrossRefGoogle Scholar
Tapia, S., IAUC 3054 (1977b).Google Scholar
Tapia, S., IAUC 3327 (1979).Google Scholar
Tapia, S., IAUC 3683 (1982).Google Scholar
Trubinikov, B.A., Phys. Fluids, 4, 195 (1961).CrossRefGoogle Scholar
Warner, B., IAU Symposium No 73 (Eds Eggleton, P., Mitton, S., Whelan, J. 1976).Google Scholar
White, N.E., Astrophys. J., 244, L85 (1981).CrossRefGoogle Scholar
Wickraraasinghe, D.T., and Meggitt, S.M.A., Mon. Not. R. Astron. Soc, 198, 975 (1982).CrossRefGoogle Scholar
Wickramasinghe, D.T., and Visvanathan, N.W., Mon. Not. R. Astron. Soc, 191, 589 (1980).CrossRefGoogle Scholar
Young, P., and Schneider, D.P., Astrophys. J., 230, 502 (1979).CrossRefGoogle Scholar