Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-18T13:50:33.439Z Has data issue: false hasContentIssue false

The Kinematics and Age of the Planetary Nebulae in the Large MagellanicCloud

Published online by Cambridge University Press:  25 April 2016

Stephen J. Meatheringham
Affiliation:
Mount Stromlo and Siding Spring Observatories, Australian National University
Michael A. Dopita
Affiliation:
Mount Stromlo and Siding Spring Observatories, Australian National University

Abstract

An HI survey of the Large Magellanic Cloud (LMC) has been reanalyzed to find the transverse velocity of the LMC, and derive an upper limit of 4.5 × 1011 M for the mass of our Galaxy out to 50 kpc. A rotation curve is derived for the LMC from the HI data giving a best mass estimate of (4.0±0.4)×109 M. Velocity observations of 97 planetary nebulae (PN) in the Large Cloud are used to compare the old and young components. Our results are found to be at odds with an earlier sample of 9 old clusters, which is interpreted as being due to the low number of objects in that sample. The w-component of velocity dispersion of the PN population is 35 km s-1 and that of the HI 10 km s-1. If this difference is a result of stellar diffusion then the average age of the PN population is 1.3 × 109 yr, implying a precursor mass of 1.8 M and a remnant mass of 0.63 M.

Type
Contributions
Copyright
Copyright © Astronomical Society of Australia 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Vaucouleurs, G., 1957, Astron. J., 62, 69.CrossRefGoogle Scholar
Vaucouleurs, G. de and Freeman, K. C., 1972, Vistas in Astronomy, 14, 163.CrossRefGoogle Scholar
Davies, R. D., Elliott, K. H.and Meaburn, J., 1976, Mem. R. Astron. Soc, 81, 89.Google Scholar
Dopita, M. A., Ford, H. C., Lawrence, C. J.and Webster, B. L., 1985, Astrophys. J., 296, 390.CrossRefGoogle Scholar
Feitzinger, J. V., Isserstedt, J. and Th, Schmidt-Kaler, 1977, Astron. Astrophys., 57, 265.Google Scholar
Feitzinger, J. V., 1980, Space Sci. Rev., 27, 35.CrossRefGoogle Scholar
Feitzinger, J. V., 1983, IAU Symp., 100, 214.CrossRefGoogle Scholar
Freeman, K. C., Illingworth, G. and Oemler, A., 1983, Astrophys. J., 272, 488.CrossRefGoogle Scholar
Iben, I. and Tutakov, A. V., 1985, Astrophys. J. Suppl. Ser., 58, 661.CrossRefGoogle Scholar
Lin, D. N. C. and Lynden-Bell, D., 1982, Mon. Not. R. Astron. Soc, 198, 707.CrossRefGoogle Scholar
Liszt, H. S., Delin, X. and Burton, W. B., 1981, Astrophys. J., 249, 532.CrossRefGoogle Scholar
Mathewson, D. S., 1976, ‘The Galaxy and the Local Group’ (RGOBull. No. 182).Google Scholar
McGee, R. X.and Milton, J. A., 1966, Aust. J. Phys., 19, 343.CrossRefGoogle Scholar
Rohlfs, K., Kreitschmann, J., Siegmann, B. C.and Feitzinger, J. V., 1984, Astron. Astrophys., 137, 343.Google Scholar
Sanduleak, N., 1984, ‘Structure and Evolution of the Magellanic Clouds’, (eds. Bergh, S. van den and de Boer, K. S.) IAU Symposium 108 (Dordrecht: Reidel) p. 231.CrossRefGoogle Scholar
Spitzer, L. and Schwarzschild, M., 1951, Astrophys. J., 114, 385.CrossRefGoogle Scholar
Spitzer, L. and Schwarzschild, M., 1953, Astrophys. J., 118, 106.CrossRefGoogle Scholar
Villumsen, J. V., 1985, Astrophys. J., 290, 75.CrossRefGoogle Scholar
White, S. D.and Frenk, C. S., 1983, ‘Kinematics, Dynamics, and Structure of the Milky Way’, (ed. Shuter, W. L.) (Dordrecht: Reidel) p.343.CrossRefGoogle Scholar
Wielen, R., 1977, Astron. Astrophys., 60, 263.Google Scholar