No CrossRef data available.
Article contents
Todd D. Little, Kai U. Schnabel, and Jtirgen Baumert (Eds.). Modeling Longitudinal and Multilevel Data: Practical Issues, Applied Approaches, and Specific Examples, Lawrence Erlbaum Associates, 2000, pp. vii + 297, $ 69.75.
Review products
Todd D. Little, Kai U. Schnabel, and Jtirgen Baumert (Eds.). Modeling Longitudinal and Multilevel Data: Practical Issues, Applied Approaches, and Specific Examples, Lawrence Erlbaum Associates, 2000, pp. vii + 297, $ 69.75.
Published online by Cambridge University Press: 01 January 2025
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Reviews
- Information
- Copyright
- Copyright © 2001 The Psychometric Society
References
Baltes, P.B., Nesselroade, J.R. (1979). History and rationale of longitudinal research. In Nesselroade, J.R., Baltes, P.B. (Eds.), Longitudinal research in the study of behavior and developments (pp. 1–39). New York, NY: Academic Press.Google Scholar
Clogg, C.C. (1988). Latent class models for measuring. In Langeheine, R., Rost, J. (Eds.), Latent trait and latent class models (pp. 173–205). New York, NY: Plenum Press.CrossRefGoogle Scholar
Clogg, C.C. (1995). Latent class models. In Arminger, G., Clogg, C.C., Sobel, M.E. (Eds.), Handbook of statistical modeling for the social and behavioral sciences (pp. 311–359). New York, NY: Plenum.CrossRefGoogle Scholar
Collins, L.M., Graham, J.W., Rousculp, S.S., Hansen, W.B. (1997). Heavy caffeine use and the beginning of the substance use onset process: An illustration of latent transition analysis. In Bryant, K.J., Windle, M., West, S.G. (Eds.), The Science of prevention: Methodological advances from alcohol and substance abuse research (pp. 79–99). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Collins, L.M., Horn, J.L. (1991). Best methods for the analysis of change: Recent advances, unanswered questions, future directions. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Gottman, J.M. (1995). The analysis of change. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Heinen, T. (1996). Latent class and discrete latent trait models: Similarities and differences. Thousand Oaks, CA: Sage Publications.Google Scholar
Langeheine, R., Rost, J. (1988). Latent trait and latent class models. New York, NY: Plenum Press.CrossRefGoogle Scholar
Langeheine, R., Stern, E., van de Pol, F. (1994). State mastery learning: Dynamic models for longitudinal data. Applied Psychological Measurement, 18, 277–291.CrossRefGoogle Scholar
Lazarsfeld, P.F. (1950). The interpretation and computation of some latent structure. In Suchman, E.A., Lazarsfeld, P.F., Starr, S.A., Clausen, J.A. (Eds.), Studies in social psychology in World War II, Vol. 4. Measurement and prediction (pp. 362–412). Princeton: Princeton University Press.Google Scholar
Lazarsfeld, P.F., Henry, N.W. (1968). Latent structure analysis. Boston: Houghton Mifflin.Google Scholar
Mislevy, R.J., Wilson, M. (1996). Marginal maximum likelihood estimation for a psychometric model of discontinuous development. Psychometrika, 61, 41–71.CrossRefGoogle Scholar
Newell, K.M., Molenaar, P.C.M. (1998). Applications of nonlinear dynamics to developmental process modeling. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Rost, J., Langeheine, R. (1997). Applications of latent trait and latent class models in the social sciences. Muenster, Germany: Waxmann Publishing.Google Scholar
Schafer, J.L. (1997). Analysis of incomplete multivariate data. London: Chapman & Hall.CrossRefGoogle Scholar
Snijders, T.A.B., Bosker, R.J. (1999). Multilevel analysis: An introduction to basic and advanced multilevel modeling. London: Sage.Google Scholar
Steyer, R., Eid, M., Schwenkmezger, P. (1997). Modeling true intraindividual change: True change as a latent variable. Methods for Psychological Research, 2, 21–33.Google Scholar
von Eye, A., Clogg, C.C. (1994). Latent variables analysis: Applications for developmental research. Thousand Oaks, CA: Sage.Google Scholar
Wiggins, L.M. (1955). Mathematical models for the analysis of multiwave panels. Ann Arbor, MI: University Microfilms.Google Scholar
Wiggins, L.M. (1973). Panel analysis: Latent probability models for attitude and behavior processes. Amsterdam: Elsevier.Google Scholar