Published online by Cambridge University Press: 01 January 2025
Repeated measures designs have been widely employed in psychological experimentation, however, such designs have rarely been analyzed by means of permutation procedures. In the present paper certain aspects of hypothesis tests in a particular repeated measures design (one non-repeated factor (A) and one repeated factor (B) with K subjects per level of A) were investigated by means of permutation rather than sampling processes. The empirical size and power of certain normal theory F-tests obtained under permutation were compared to their nominal normal theory values. Data sets were established in which various combinations of kurtosis of subject means and intra-subject variance heterogeneity existed in order that their effect upon the agreement of these two models could be ascertained. The results indicated that except in cases of high intra-subject variance heterogeneity, the usual F-tests on B and AB exhibited approximately the same size and power characteristics whether based upon a permutation or normal theory sampling basis.
This research prepared under Contract No. 2593 from the Cooperative Research Branch of the U. S. Office of Education.