Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T10:20:39.813Z Has data issue: false hasContentIssue false

A Seven-Decimal Table of the Area (a) Under the Unit Normal Curve, for Abscissae Expressed in Terms of P.E.

Published online by Cambridge University Press:  01 January 2025

Ruth H. Krause
Affiliation:
University of California
Herbert S. Conrad
Affiliation:
University of California

Abstract

A seven-decimal table is presented of the area under the unit normal curve, for abscissae expressed in terms of the “probable error” or PE. From the method of calculation, the partial verification by means of other tables, and the safeguards taken in the routine of computation, it is safe to consider the table reliable. Errors in previously published tables are pointed out.

Type
Original Paper
Copyright
Copyright © 1937 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

For criticism of the manuscript and valuable suggestions, the writers are indebted to Professors Raymond T. Birge, Albert H. Mowbray, Noel Keys, and Miss Louise Boulware. For assistance in certain portions of the computations, we wish to acknowledge the services of Mrs. Mildred E. Conrad and Mrs. Lina H. Aylesworth.

References

Benini, Rodolf. Principii di Statistica Metodologica. Italy: Unione Tipografico Editrice Torinese. 1906, 230230.Google Scholar
Broom, M. E.Educational Statistics for Beginning Students. New York: American Book Co.. 1936, 302302.Google Scholar
Burgess, Jame. (1896).On the Definite Integral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{2}{{\sqrt \pi }}\int_0^t {e^{ - t^2 } dt}$$ \end{document}, with Extended Tables of Values. Trans. Royal Soc. Edinburgh, 39, 257321.CrossRefGoogle Scholar
Cooke, D. H.Minimum Essentials of Statistics. New York: Macmillan. 1936, 247247.Google Scholar
Deming, W. E.and Birge, R. T.On the Statistical Theory of Errors. Reviews of Modern Physics, 1934, 6, 119161.CrossRefGoogle Scholar
De Morgan, A.Theory of Probabilities. Encyclopaedia Metropolitana, 1836, 2, 393490.Google Scholar
De Morgan, A.An Essay on Probabilities, pp. xxxviii-xl. London: Printed by A. Spottiswoode, for Longman, Orme, Brown, etc., 1838.Google Scholar
Encke, J. F.Über die Methode der kleinsten Quadrate. In Encke, J. F.(Eds.), Berliner Astronom. Jahrb. für 1834. Berlin: Königl. Akademie der Wissenschaften. 1832, 309312.Google Scholar
Fowle, F. E.Smithsonian Physical Tables fifth revised edition, (pp. 4848). Washington, D. C.:: Smithsonian Institution, 1910.Google Scholar
Fowle, F. E. Smithsonian Physical Tables sixth revised edition, (pp. 5757). Washington, D. C.: Smithsonian Institution, 1914.Google Scholar
Fowle, F. E.Smithsonian Physical Tables first reprint of eighth revised edition, (pp. 5757). Washington, D. C.: Smithsonian Institution, 1934.Google Scholar
Garrett, H. E.Statistics in Psychology and Education. New York: Longmans Green. 1926, 9393.Google Scholar
Gavett, G. I.First Course in Statistical Method. New York: McGraw-Hill. 1925, 180180.Google Scholar
Gray, T.Smithsonian Physical Tables first edition, (pp. 3636). Washington, D. C.: Smithsonian Institution, 1896.Google Scholar
Gregory, C. A.and Renfrow, O. W.Statistical Method in Education and Psychology. Cincinnati: C. A. Gregory Co.. 1929, 9797.Google Scholar
Hodgman, C. D.Handbook of Chemistry and Physics. Cleveland: Chemical Rubber Publishing Co.. 1932, 180180.Google Scholar
Holzinger, K. J.Statistical Methods for Students in Education. Boston: Ginn and Co.. 1928, 237237.Google Scholar
Howe, M. A.Formulas and Tables Used in the Application of the Method of Least Squares. Terre Haute, Ind.: Moore and Langen. 1890, 2427.Google Scholar
Huntington, E. V.Mathematical Memoranda. In Rietz, H. L.(Eds.), Handbook of Mathematical Statistics. Boston: Houghton Mifflin. 1924, 1111.Google Scholar
Johnson, W. W.The Theory of Errors and Method of Least Squares. Baltimore: Press of Isaac Friedenwald. 1890, 121121.Google Scholar
Kondo, T.and Elderton, E. M.Table of the Normal Curve Functions to Each Permille of Frequency. Biometrika, 1930, 22, 368376.Google Scholar
Leland, O. M.Practical Least Squares. New York: McGraw-Hill. 1921, 231231.Google Scholar
Merriman, M.Method of Least Squares. New York: John Wiley and Sons. 1909, 221221.Google Scholar
Morton, R. L.Statistical Tables. New York: Silver Burdett. 1928, xlviixlvii.Google Scholar
Odell, C. W.Statistical Method in Education. New York: D. Appleton-Century. 1935, 444445.Google Scholar
Palmer, A. de F.The Theory of Measurement. New York: McGraw-Hill. 1912, 226226.Google Scholar
Pearl, R.Introduction to Medical Biometry and Statistics. Philadelphia: W. B. Saunders. 1930, 438438.Google Scholar
Pearson, Kar.Tables for Statisticians and Biometricians second edition, (pp. 28). London: Biometric Laboratory, University College, 1924.Google Scholar
Rice, H. L.The Theory and Practice of Interpolation. Lynn, Mass.: Nichols Press. 1899, 6767.Google Scholar
Rietz, H. L.Random Sampling. In Rietz, H. L.(Eds.), Handbook of Mathematical Statistics. Boston: Houghton Mifflin. 1924, 7575.Google Scholar
Rugg, H. O.Statistical Methods Applied to Education. Boston: Houghton Mifflin. 1917, 391391.Google Scholar
Sheppard, W. F.New Tables of the Probability Integral. Biometrika, 1902, 2, 182188.Google Scholar
Sorenson, H.Statistics for Students of Psychology and Education. New York: McGraw-Hill. 1936, 366366.CrossRefGoogle Scholar
Thorndike, E. L.An Introduction to the Theory of Mental and Social Measurements. New York: The Science Press. 1904, 149149.CrossRefGoogle Scholar
Whipple, G. C.Vital Statistics. New York: John Wiley and Sons. 1923, 450450.Google Scholar