Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-08T10:14:39.735Z Has data issue: false hasContentIssue false

A Second Generation Little Jiffy

Published online by Cambridge University Press:  01 January 2025

Henry F. Kaiser*
Affiliation:
University of California, Berkeley

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Original Paper
Copyright
Copyright © 1970 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Presidential address delivered at the annual metting of the Psychometric Society Miami Beach, September 7, 1970. This research was supported in part by the Committee on Basic Research in Education (Patrick Suppes, Chairman), United States Office of Education, and the Committee on Research (Robert R. Brown, Chairman), University of California, Berkeley.

References

Cronbach, L. J. Essentials of psychological testing, 3rd ed., New York: Harper and Row, 1970.Google Scholar
Glass, G. V and Taylor, P. A. Factor analytic methodology. Review of Educational Research, 1966, 36, 566587.Google Scholar
Green, B. F. The computer revolution in psychometrics. Psychometrika, 1966, 31, 437445.CrossRefGoogle ScholarPubMed
Guttman, L. Multiple rectilinear prediction and the resolution into components. Psychometrika, 1940, 5, 7599.CrossRefGoogle Scholar
Guttman, L. Image theory for the structure of quantitative variates. Psychometrika, 1953, 18, 277296.CrossRefGoogle Scholar
Guttman, L. Some necessary conditions for common-factor analysis. Psychometrika, 1954, 19, 149162.CrossRefGoogle Scholar
Guttman, L. “Best possible” systematic estimates of communalities. Psychometrika, 1956, 21, 273286.CrossRefGoogle Scholar
Harris, C. W. Some Rao-Guttman relationships. Psychometrika, 1962, 27, 247263.CrossRefGoogle Scholar
Harris, C. W. and Kaiser, H. F. Oblique factor analytic solutions by orthogonal transformations. Psychometrika, 1964, 29, 347362.CrossRefGoogle Scholar
Horn, J. L. A rationale and test for the number of factors in factor analysis. Psychometrika, 1965, 30, 179185.CrossRefGoogle ScholarPubMed
Hotelling, H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 1933, 24, 417441.CrossRefGoogle Scholar
Kaiser, H. F. The varimax method of factor analysis, 1956, Berkeley: University of California.Google Scholar
Kaiser, H. F. The best approximation of a common-factor space. University of California Res. Rep. 25, Contr. No. AF 41(657)-76, 1958a..Google Scholar
Kaiser, H. F. The varimax criterion for analytic rotation in factor analysis. Psychometrika, 1958, 23, 187200.CrossRefGoogle Scholar
Kaiser, H. F. The application of electronic computers to factor analysis. Educational and Psychological Measurement, 1960, 20, 141151.CrossRefGoogle Scholar
Kaiser, H. F. Image analysis. In Harris, C. W. (Eds.), Problems in measuring change. Madison: University of Wisconsin Press. 1963, 156166.Google Scholar
Kaiser, H. F., Caffrey, J. Alpha factor analysis. Psychometrika, 1965, 30, 114.CrossRefGoogle ScholarPubMed
Kaiser, H. F., Dickman, K. W. Analytic determination of common factors. American Psychologist, 1959, 14, 425425.Google Scholar
Kaiser, H. F., and Hunka, S. Some empirical results with Guttman's stronger lower bound for the number of common factors. Unpublished manuscript, 1960..Google Scholar
Kendall, M. G., Babington-Smith, B. Factor analysis. Journal of the Royal Statistical Society B, 1950, 12, 6094.CrossRefGoogle Scholar
Lawley, D. N. The estimation of factor loadings by the method of maximum likelihood. Proceedings of the Royal Society of Edinburgh, 1940, 60, 6482.CrossRefGoogle Scholar
Neuhaus, J. O., Wrigley, C. The quartimax method: an analytical approach to orthogonal simple structure. British Journal of Statistical Psychology, 1954, 7, 8191.CrossRefGoogle Scholar
Rao, C. R. Estimation and tests of significance in factor analysis. Psychometrika, 1955, 20, 93111.CrossRefGoogle Scholar
Saunders, D. R. Trans-varimax: some properties of the ratiomax and equamax criteria for blind orthogonal rotation. American Psychologist, 1962, 17, 395395.Google Scholar
Savage, L. J. The foundation of statistics, 1954, New York: Wiley.Google Scholar
Thurstone, L. L. Multiple-factor analysis, 1947, Chicago: Univ. Chicago Press.Google Scholar
Tucker, L. R, Koopman, R. F., and Linn, R. L. Evaluation of factor analytic research procedures by means of simulated correlation matrices. Psychometrika, 1969, 34, 421459.CrossRefGoogle Scholar
Tukey, J. W. The future of data analysis. Annals of Mathematical Statistics, 1962, 33, 167.CrossRefGoogle Scholar