Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T10:31:27.707Z Has data issue: false hasContentIssue false

Score-Based Tests of Differential Item Functioning via Pairwise Maximum Likelihood Estimation

Published online by Cambridge University Press:  01 January 2025

Ting Wang*
Affiliation:
University of Missouri
Carolin Strobl
Affiliation:
University of Zurich
Achim Zeileis
Affiliation:
Universität Innsbruck
Edgar C. Merkle
Affiliation:
University of Missouri
*
Correspondence should be made to Ting Wang, Department of Psychological Sciences, University of Missouri, Columbia, MO, USA. Email: [email protected]

Abstract

Measurement invariance is a fundamental assumption in item response theory models, where the relationship between a latent construct (ability) and observed item responses is of interest. Violation of this assumption would render the scale misinterpreted or cause systematic bias against certain groups of persons. While a number of methods have been proposed to detect measurement invariance violations, they typically require advance definition of problematic item parameters and respondent grouping information. However, these pieces of information are typically unknown in practice. As an alternative, this paper focuses on a family of recently proposed tests based on stochastic processes of casewise derivatives of the likelihood function (i.e., scores). These score-based tests only require estimation of the null model (when measurement invariance is assumed to hold), and they have been previously applied in factor-analytic, continuous data contexts as well as in models of the Rasch family. In this paper, we aim to extend these tests to two-parameter item response models, with strong emphasis on pairwise maximum likelihood. The tests’ theoretical background and implementation are detailed, and the tests’ abilities to identify problematic item parameters are studied via simulation. An empirical example illustrating the tests’ use in practice is also provided.

Type
Original Paper
Copyright
Copyright © 2017 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supported by National Science Foundation Grants SES-1061334 and 1460719

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11336-017-9591-8) contains supplementary material, which is available to authorized users.

References

Andrews, D.W.K., (1993). Tests for parameter instability and structural change with unknown change point, Econometrica, 61, 821856.CrossRefGoogle Scholar
Bechger, T.M., Maris, G., (2015). A statistical test for differential item pair functioning, Psychometrika, 80(2), 317340.CrossRefGoogle ScholarPubMed
Bock, R.D., Schilling, S., (1997). High-dimensional full-information item factor analysis. In Berkane, M. (Ed.), Latent variable modeling and applications to causality, New York, NY: Springer pp(163176).CrossRefGoogle Scholar
Chalmers, R.P., (2012). mirt: A multidimensional item response theory package for the R environment, Journal of Statistical Software, 48(6), 129.CrossRefGoogle Scholar
De Ayala, R.J., (2009). The theory and practice of item response theory, New York: Guilford Press.Google Scholar
Doolaard, S., (1999). Schools in change or schools in chains. Unpublished doctoral dissertation, University of Twente, The Netherlands.Google Scholar
Dorans, N.J., (2004). Using subpopulation invariance to assess test score equity, Journal of Educational Measurement, 41(1), 4368.CrossRefGoogle Scholar
Fischer, G.H. eds.Fischer, G.H., Molenaar, I.W., (1995). Derivations of the Rasch model, Rasch models, New York, NY: Springer pp(1538).CrossRefGoogle Scholar
Fischer, G.H., (1995). Some neglected problems in IRT, Psychometrika, 60(4), 459487.CrossRefGoogle Scholar
Fischer, G.H., Molenaar, I.W., (2012). Rasch models: Foundations, recent developments, and applications, Berlin: Springer.Google Scholar
Fox, J-P, (2010). Bayesian item response modeling: Theory and applications New York, NY: Springer.CrossRefGoogle Scholar
Glas, C.A.W., (1998). Detection of differential item functioning using Lagrange multiplier tests, Statistica Sinica, 8(3), 647667.Google Scholar
Glas, C.A.W., (1999). Modification indices for the 2-PL and the nominal response model, Psychometrika, 64(3), 273294.CrossRefGoogle Scholar
Glas, C.A.W., (2009). Item parameter estimation and item fit analysis. In van der Linden, W., Glas, C.A.W.(Eds.), Elements of adaptive testing, New York, NY: Springer pp(269288).CrossRefGoogle Scholar
Glas, C.A.W., (2010). Testing fit to IRT models for polytomously scored items, In Nering, M.L., Ostini, R.(Eds.), Handbook of polytomous item response theory models, New York, NY: Routledge pp(185210).Google Scholar
Glas, C. A. W., (2015). Item response theory models in behavioral social science: Assessment of fit. Wiley StatsRef: Statistics Reference Online. https://doi.org/10.1002/9781118445112.stat06436.pub2.CrossRefGoogle Scholar
Glas, C.A.W., Falcón, J.C.S., (2003). A comparison of item-fit statistics for the three-parameter logistic model, Applied Psychological Measurement, 27(2), 87106.CrossRefGoogle Scholar
Glas, C.A.W., Jehangir, K., (2014). Modeling country-specific differential item functioning. In Rutkowski, L., von Davier, M., Rutkowski, D.(Eds.), Handbook of international large-scale assessment: Background, technical issues, and methods of data analysis, Boca Raton, FL: Chapman and Hall/CRC pp(97115).Google Scholar
Glas, C.A.W., Linden, W.J., (2010). Marginal likelihood inference for a model for item responses and response times, British Journal of Mathematical and Statistical Psychology, 63(3), 603626.CrossRefGoogle Scholar
Hjort, N.L., Koning, A., (2002). Tests for constancy of model parameters over time, Nonparametric Statistics, 14, 113132.CrossRefGoogle Scholar
Holland, P.W., Thayer, D.T., (1988). Differential item performance and the Mantel-Haenszel procedure. In Wainer, H., Braun, H.I.(Eds.), Test validity, Hillsdale, NJ: Routledge pp(129145.Google Scholar
Katsikatsou, M., Moustaki, I., (2016). Pairwise likelihood ratio tests and model selection criteria for structural equation models with ordinal variables, Psychometrika, 81(4), 10461068.CrossRefGoogle ScholarPubMed
Katsikatsou, M., Moustaki, I., Yang-Wallentin, F., Jöreskog, K.G., (2012). Pairwise likelihood estimation for factor analysis models with ordinal data, Computational Statistics & Data Analysis, 56(12), 42434258.CrossRefGoogle Scholar
Kolen, M.J., Brennan, R.L., (2004). Test equating, scaling, and linking, New York: Springer.CrossRefGoogle Scholar
Kopf, J., Zeileis, A., Strobl, C., (2015). Anchor selection strategies for DIF analysis: Review, assessment, and new approaches, Educational and Psychological Measurement, 75(1), 2256.CrossRefGoogle ScholarPubMed
Lord, F.M., (1980). Applications of item response theory to practical testing problems, New York: Routledge.Google Scholar
Magis, D., Beland, S., & Raiche, G., (2015). difR: Collection of methods to detect dichotomous differential item functioning (DIF) [Computer software manual]. (R package version 4.6). https://doi.org/10.3758/brm.42.3.847.CrossRefGoogle Scholar
Magis, D., Béland, S., Tuerlinckx, F., De Boeck, P., (2010). A general framework and an R package for the detection of dichotomous differential item functioning, Behavior Research Methods, 42(3), 847862.CrossRefGoogle Scholar
Magis, D., Facon, B., (2013). Item purification does not always improve DIF detection: A counterexample with Angoff’s delta plot, Educational and Psychological Measurement, 73(2), 293311.CrossRefGoogle Scholar
Mellenbergh, G.J., (1989). Item bias and item response theory, International Journal of Educational Research, 13, 127143.CrossRefGoogle Scholar
Merkle, E.C., Fan, J., Zeileis, A., (2014). Testing for measurement invariance with respect to an ordinal variable, Psychometrika, 79, 569584.CrossRefGoogle Scholar
Merkle, E.C., Zeileis, A., (2013). Tests of measurement invariance without subgroups: A generalization of classical methods, Psychometrika, 78, 5982.CrossRefGoogle ScholarPubMed
Millsap, R.E., (2005). Four unresolved problems in studies of factorial invariance. In Maydeu-Olivares, A., McArdle, J.J.(Eds.), Contemporary psychometrics, Mahwah, NJ: Lawrence Erlbaum Associates pp(153171).Google Scholar
Millsap, R.E., (2012). Statistical approaches to measurement invariance New York: Routledge.CrossRefGoogle Scholar
Millsap, R.E., Everson, H.T., (1993). Methodology review: Statistical approaches for assessing measurement bias, Applied Psychological Measurement, 17(4), 297334.CrossRefGoogle Scholar
Muraki, E., (1992). A generalized partial credit model: Application of an EM algorithm, Applied Psychological Measurement, 16, 159176.CrossRefGoogle Scholar
Osterlind, S.J., Everson, H.T., (2009). Differential item functioning Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
Raju, N.S., (1988). The area between two item characteristic curves, Psychometrika, 53(4), 495502.CrossRefGoogle Scholar
Core, R Team. (2017). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from http://www.R-project.org/.Google Scholar
Rosseel, Y., (2012). lavaan: An R package for structural equation modeling, Journal of Statistical Software, 48(2), 136.CrossRefGoogle Scholar
Samejima, F., (1969). Estimation of latent ability using a response pattern of graded scores, Psychometrika Monograph Supplement.Google Scholar
Satorra, A., (1989). Alternative test criteria in covariance structure analysis: A unified approach, Psychometrika, 54, 131151.CrossRefGoogle Scholar
Schilling, S., Bock, R.D., (2005). High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature, Psychometrika, 70(3), 533555.Google Scholar
Stark, S., Chernyshenko, O.S., Drasgow, F., (2006). Detecting differential item functioning with confirmatory factor analysis and item response theory: Toward a unified strategy, Journal of Applied Psychology, 91, 12921306.CrossRefGoogle Scholar
Strobl, C., Kopf, J., Zeileis, A., (2015). Rasch trees: A new method for detecting differential item functioning in the Rasch model, Psychometrika, 80, 289316.CrossRefGoogle Scholar
Swaminathan, H., Rogers, H.J., (1990). Detecting differential item functioning using logistic regression procedures, Journal of Educational Measurement, 27(4), 361370.CrossRefGoogle Scholar
Takane, Y., de Leeuw, J., (1987). On the relationship between item response theory and factor analysis of discretized variables, Psychometrika, 52, 393408.CrossRefGoogle Scholar
Thissen, D., (1982). Marginal maximum likelihood estimation for the one-parameter logistic model, Psychometrika, 47, 175186.CrossRefGoogle Scholar
Thissen, D., Steinberg, L., Wainer, H., (1988). Use of item response theory in the study of group differences in trace lines. In Wainer, H., Braun, H.I.(Eds.), Test validity, Hillsdale, NJ: Lawrence Erlbaum Associates pp(147172).Google Scholar
Tutz, G., Schauberger, G., (2015). A penalty approach to differential item functioning in Rasch models, Psychometrika, 80(1), 2143.CrossRefGoogle ScholarPubMed
Van den Noortgate, W., De Boeck, P., (2005). Assessing and explaining differential item functioning using logistic mixed models, Journal of Educational and Behavioral Statistics, 30(4), 443464.CrossRefGoogle Scholar
Verhagen, J., Levy, R., Millsap, R.E., Fox, J-P, (2016). Evaluating evidence for invariant items: A Bayes factor applied to testing measurement invariance in IRT models, Journal of Mathematical Psychology, 72, 171182.CrossRefGoogle Scholar
Wang, T., Merkle, E., Zeileis, A., (2014). Score-based tests of measurement invariance: Use in practice, Frontiers in Psychology, 5(438), 111.CrossRefGoogle ScholarPubMed
Wang, W-CYeh, Y-L, (2003). Effects of anchor item methods on differential item functioning detection with the likelihood ratio test, Applied Psychological Measurement, 27(6), 479498.CrossRefGoogle Scholar
Woods, C.M., (2009). Empirical selection of anchors for tests of differential item functioning, Applied Psychological Measurement, 33(1), 4257.CrossRefGoogle Scholar
Zeileis, A., (2006). Implementing a class of structural change tests: An econometric computing approach, Computational Statistics & Data Analysis, 50(11), 29873008.CrossRefGoogle Scholar
Zeileis, A., Hornik, K., (2007). Generalized M-fluctuation tests for parameter instability, Statistica Neerlandica, 61, 488508.CrossRefGoogle Scholar
Zeileis, A., Leisch, F., Hornik, K., Kleiber, C., (2002). strucchange: An R package for testing structural change in linear regression models: An R package for testing structural change in linear regression models, Journal of Statistical Software, 7(2), 138.CrossRefGoogle Scholar
Supplementary material: File

Wang et al. supplementary material

Wang et al. supplementary material
Download Wang et al. supplementary material(File)
File 217.6 KB