Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T14:52:29.286Z Has data issue: false hasContentIssue false

Rotating Factors to Simplify Their Structural Paths

Published online by Cambridge University Press:  01 January 2025

Guangjian Zhang*
Affiliation:
University of Notre Dame
Minami Hattori
Affiliation:
Soka University
Lauren A. Trichtinger
Affiliation:
Simmons University
*
Correspondence should be made to Guangjian Zhang, Psychology Department, University of Notre Dame, 390 Corbett Family Hall, Notre Dame, IN 46556, USA. Email: [email protected]

Abstract

Applications of structural equation modeling (SEM) may encounter issues like inadmissible parameter estimates, nonconvergence, or unsatisfactory model fit. We propose a new factor rotation method that reparameterizes the factor correlation matrix in exploratory factor analysis (EFA) such that factors can be either exogenous or endogenous. The proposed method is an oblique rotation method for EFA, but it allows directional structural paths among factors. We thus referred it to as FSP (factor structural paths) rotation. In particular, we can use FSP rotation to “translate” an SEM model to incorporate theoretical expectations on both factor loadings and structural parameters. We illustrate FSP rotation with an empirical example and explore its statistical properties with simulated data. The results include that (1) EFA with FSP rotation tends to fit data better and encounters fewer Heywood cases than SEM does when there are cross-loadings and many small nonzero loadings, (2) FSP rotated parameter estimates are satisfactory for small models, and (3) FSP rotated parameter estimates are more satisfactory for large models when the structural parameter matrices are sparse.

Type
Theory & Methods
Copyright
Copyright © 2022 The Author(s) under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. C., &Gerbing, D. W.(1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103, 411423CrossRefGoogle Scholar
Archer, C. O., &Jennrich, R. I.(1973). Standard errors for orthogonally rotated factor loadings. Psychometrika, 38, 581592CrossRefGoogle Scholar
Asparouhov, T., &Muthén, B.(2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397438CrossRefGoogle Scholar
Bollen, K. A.(1989). Structural equations with latent variables, New York: Wiley.CrossRefGoogle Scholar
Browne, M. W.(1972). Oblique rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 207212CrossRefGoogle Scholar
Browne, M. W.(2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111150CrossRefGoogle Scholar
Browne, M. W., &Cudeck, R.(1993). Alternative ways of assessing model fit.Bollen, K. A., &Long, J. S. Testing structural equation models, Newbury Park, CA: Sage.136162Google Scholar
Browne, M. W., &Shapiro, A.(1986). The asymptotic covariance matrix of sample correlation coefficients under general conditions. Linear Algebra and Its Applications, 82, 169176CrossRefGoogle Scholar
Clarkson, D. B.(1979). Estimating the standard errors of rotated factor loadings by jackknifing. Psychometrika, 44, 297314CrossRefGoogle Scholar
Crawford, C. B., &Ferguson, G. A.(1970). A general rotation criterion and its use in orthogonal rotation. Psychometrika, 35, 321332CrossRefGoogle Scholar
Cudeck, R., &O’Dell, L. L.(1994). Applications of standard error estimates in unrestricted factor analysis: Significance tests for factor loadings and correlations. Psychological Bulletin, 115, 475487CrossRefGoogle ScholarPubMed
Gorsuch, R. L.(1983). Factor analysis, 2Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Hayashi, K., Yung, Y. -F.(1999). Standard errors for the class of orthomax-rotated factor loadings: some matrix results. Psychometrika, 64, 451460CrossRefGoogle Scholar
Ichikawa, M., &Konishi, S.(1995). Application of the bootstrap methods in factor analysis. Psychometrika, 60, 7793CrossRefGoogle Scholar
Jennrich, R. I.(1973). Standard errors for obliquely rotated factor loadings. Psychometrika, 38, 593604CrossRefGoogle Scholar
Jennrich, R. I.(1974). Simplified formulae for standard errors in maximum-likelihood factor analysis. British Journal of Mathematical and Statistical Psychology, 27, 122131CrossRefGoogle Scholar
Jennrich, R. I.(2002). A simple general method for oblique rotation. Psychometrika, 67, 719CrossRefGoogle Scholar
Jennrich, R. I.(2004). Derivative free gradient projection algorithms for rotation. Psychometrika, 69, 475480CrossRefGoogle Scholar
Jennrich, R. I.(2007). Rotation methods, algorithms, and standard errors. Cudeck, R., &MacCallum, R. C. Factor analysis at 100: Historical developments and future directions, Mahwah, NJ: Lawrence Erlbaum Associates.315335Google Scholar
Johnson, R. A., & Wichern, D. W.(2007). Applied multivariate statistical analysis, 6Upper Saddle River, NJ: Pearson Prentic Hall.Google Scholar
Jöreskog, K. G.(1994). On the estimation of polychoric correlations and their asymptotic covariance matrix. Psychometrika, 59, 381389CrossRefGoogle Scholar
Kaiser, H. F.(1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200CrossRefGoogle Scholar
Lee, C-T, Zhang, G., &Edwards, M. C.(2012). Ordinary least squares estimation of parameters in exploratory factor analysis with ordinal data. Multivariate Behavioral Research, 47, 314339CrossRefGoogle ScholarPubMed
Lee, S. Y., Xong, X. -Y., &Tang, N. -S.(2007). Bayesian methods for analyzing structural equation models with covariates, interaction, and quadratic latent variables. Strucutral Equation Modeling: A Multidisciplinary Journal, 14, 404434CrossRefGoogle Scholar
MacCallum, R. C.(1986). Specification searches in covariance structure modeling. Psychological Bulletin, 100, 107120CrossRefGoogle Scholar
MacCallum, R. C.(2003). Working with imperfect models. Multivariate Behavioral Research, 38, 113139CrossRefGoogle ScholarPubMed
MacCallum, R. C., Widaman, K. F., Zhang, S., &Hong, S.(1999). Sample size in factor analysis. Psychological Methods, 4, 8499CrossRefGoogle Scholar
Merkle, E. C., Fitzsimmons, E., Uanhoro, J., &Goodrich, B.(2021). Efficient Bayesian structural equation modeling in Stan. Journal of Statistical Software, 100(6),122CrossRefGoogle Scholar
Merkle, E. C., &Rosseel, Y.(2018). blavaan: Bayesian structural equation models via parameter expansion. Journal of Statistical Software, 85, 130CrossRefGoogle Scholar
Mulaik, S. A.(2010). Foundations of factor analysis, 2Boca Raton, FL: Chapman & Hall/CRC.Google Scholar
Muthén, B., &Asparouhov, T.(2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17, 313335CrossRefGoogle ScholarPubMed
Ogasawara, H.(2007). Asymptotic expansion of the distributions of the estimators in factor analysis under non-normality. British Journal of Mathematical and Statistical Psychology, 60, 395420CrossRefGoogle ScholarPubMed
Pennell, R. (1972). Routinely computable confidence intervals for factor loadings using the “jackknife”. British Journal of Mathematical and Statistical Psychology, 25, 107–114. https://doi.org/10.1111/j.2044-8317.1972.tb00481.xCrossRefGoogle Scholar
Reisenzein, R.(1986). A structural equation analysis of Weiner’s attribution-affect model of helping behavior. Journal of Personality and Social Psychology, 50, 11231133CrossRefGoogle Scholar
Steiger, J. H., &Hakstian, A. R.(1982). The asymptotic distribution of elements of a correlation matrix: theory and application. British Journal of Mathematical and Statistical Psychology, 35, 208215CrossRefGoogle Scholar
Swain, A. J.(1975). A class of factor analysis estimation procedures with common asymptotic sampling properties. Psychometrika, 40, 315335CrossRefGoogle Scholar
Thurstone, L. L.(1947). Multiple factor analysis, Chicago: University of Chicago Press.Google Scholar
Yates, A.(1987). Multivariate exploratory data analysis: A perspective on exploratory factor analysis, Albany, NY: State University of New York Press.Google Scholar
Yuan, K. -H., Marshall, L. L., Bentler, P. M.(2002). A unified approach to exploratory factor analysis with missing data, nonnormal data, and in the presence of outliers. Psychometrika, 67, 95121CrossRefGoogle Scholar
Zhang, G., Hattori, M., Trichtinger, L., & Wang, X.(2019). Target rotation with both factor loadings and factor correlations. Psychological Methods, 24, 390420CrossRefGoogle ScholarPubMed
Zhang, G., Jiang, G., Hattori, M., & Trichtinger, L. (2020). Utility functions for exploratory factor analysis [Computer software manual]. Retrieved from https://cran.r-project.org/web/packages/EFAutilities/EFAutilities.pdf (version 2.1.1)Google Scholar