Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T15:03:59.317Z Has data issue: false hasContentIssue false

Restricted Latent Class Models for Nominal Response Data: Identifiability and Estimation

Published online by Cambridge University Press:  27 December 2024

Ying Liu
Affiliation:
University of Illinois at Urbana-Champaign
Steven Andrew Culpepper*
Affiliation:
University of Illinois at Urbana-Champaign
*
Correspondence should be made to Steven Andrew Culpepper, Department of Statistics, University of Illinois at Urbana-Champaign, Computing Applications Building, Room 152, 605 E. Springfield Ave., Champaign, IL61820, USA. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Restricted latent class models (RLCMs) provide an important framework for diagnosing and classifying respondents on a collection of multivariate binary responses. Recent research made significant advances in theory for establishing identifiability conditions for RLCMs with binary and polytomous response data. Multiclass data, which are unordered nominal response data, are also widely collected in the social sciences and psychometrics via forced-choice inventories and multiple choice tests. We establish new identifiability conditions for parameters of RLCMs for multiclass data and discuss the implications for substantive applications. The new identifiability conditions are applicable to a wealth of RLCMs for polytomous and nominal response data. We propose a Bayesian framework for inferring model parameters, assess parameter recovery in a Monte Carlo simulation study, and present an application of the model to a real dataset.

Type
Theory and Methods
Copyright
Copyright © 2023 The Author(s), under exclusive licence to The Psychometric Society

1. Introduction

Mixture models for multivariate, unordered categorical data, which are also referred to as nominal data, are widely used as a data reduction technique to uncover a partition of latent classes. Nominal response data arises naturally in a diverse collection of fields and associated latent class models have been applied to uncover the structure underlying positional dependence of nucleotides (Dunson & Xing, Reference Dunson and Xing2009), surveys responses for political elections (DeYoreo et al., Reference DeYoreo, Reiter and Hillygus2017), anuran abundance using calling survey data (Royle & Link, Reference Royle and Link2005), as well as for multiple imputation of educational (Si & Reiter, Reference Si and Reiter2013) and social science (Murray & Reiter, Reference Murray and Reiter2016; Vermunt et al., Reference Vermunt, Van Ginkel, Van der Ark and Sijtsma2008) surveys. In short, nominal mixture models serve an important role across the physical and social sciences.

Recent psychometric research introduced a class of restricted latent class models (RLCMs) that use a more parsimonious formulation for describing the structure underlying multivariate nominal data (e.g., see Chen & Zhou, Reference Chen and Zhou2017, Fang et al., Reference Fang, Liu and Ying2019, Templin et al., Reference Templin, Henson, Rupp, Jang and Ahmed2008) than the traditional framework, which we refer to as unrestricted latent class models (ULCMs). For instance, a popular application of nominal RLCMs is to understand how latent classes relate to target and distractor responses on multiple choice tests (e.g., see Bradshaw & Templin, Reference Bradshaw and Templin2014, De La Torre, Reference De La Torre2009, DiBello et al., Reference DiBello, Henson and Stout2015, Ku et al., Reference Kuo, Chen, Yang and Mok2016, Shear & Roussos, Reference Shear and Roussos2017, Yigit et al., Reference Yigit, Sorrel and de la Torre2019). In order to distinguish RLCMs and ULCMs we let Θ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }$$\end{document} denote the emission parameters that govern the likelihood that latent classes select different options on J variables with M unordered options for each variable. If C denotes the number of latent classes, the classic ULCM framework includes J×M×C \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J\times M\times C$$\end{document} parameters to relate latent class membership to observed responses. In contrast, RLCMs impose structure on the elements of Θ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }$$\end{document} by constraining some elements to be equal. Accordingly, RLCMs include fewer parameters than ULCMs. Furthermore, as we demonstrate below, RLCMs generally offer a more interpretable framework for understanding the latent structure (i.e., the relationship between the latent classes and observed variables). In fact, the pattern of equal and unequal elements in the RLCM Θ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }$$\end{document} parameter provides researchers with a guide for interpreting the impact of latent class membership on response probabilities.

Although prior research developed several general models for nominal RLCMs, there are at least two limitations with existing research that limits widespread applicability of these methods for statistical research in education and the social sciences. First, existing methods are primarily confirmatory in nature given that researchers must prespecify the manner by which latent classes relate to observed response probabilities. Specifically, let Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} be the RLCM parameter with J×(M-1)×C \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J\times (M-1)\times C$$\end{document} binary elements that indicate which elements of Θ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }$$\end{document} are equal (we formally define the Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} matrix below with examples). Currently deployed nominal RLCMs must specify every element of Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} , which may be challenging for some research applications. Whereas researchers may be able to correctly articulate the latent structure in Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} for some applications (e.g., target and distractor responses on some multiple choice tests), the general unavailability of substantive theory would limit widespread application of nominal RLCMs. Second, numerous studies developed RLCMs for multivariate nominal data, yet there has been limited research on conditions that are needed to ensure model parameters are identified. It is important to note that several studies discussed identifiability for ULCMs (e.g., see Allman et al., Reference Allman, Matias and Rhodes2009); however, current results are not specific for RLCMs given that Allman et al. (Reference Allman, Matias and Rhodes2009) consider an unrestricted parameter space whereas the parameter space for our RLCM is restricted by the structure of Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} . Consequently, the parameter space falls into a measure zero set with respect to the whole parameter space of ULCMs as discussed in Allman et al. (Reference Allman, Matias and Rhodes2009), so identifiability conditions mentioned above for ULCMs cannot be directly applied to our RLCMs. Furthermore, our paper contributes to literature on the identifiability RLCMs. An extensive collection of literatures have delved into local identifiability issues, which aim to ensure the model parameters are identifiable in a neighborhood of the true parameters. McHugh (Reference McHugh1956) proposed sufficient conditions to determine the local identifiability condition for latent class model with binary response. Goodman (Reference Goodman1974) extended the conditions for latent class models with polytomous response. Huang and Bandeen-Roche (Reference Huang and Bandeen-Roche2004) proposed local identifiability conditions for latent class models with covariates. For global identifiability issue, there are numerous papers proposing strict and generic identifiability conditions for binary response data (Chen et al., Reference Chen, Liu, Xu and Ying2015, Reference Chen, Culpepper and Liang2020; Xu, Reference Xu2017; Xu & Shang, Reference Xu and Shang2018) and strict identifiability conditions for polytomous response data (Culpepper, Reference Culpepper2019; Fang et al., Reference Fang, Liu and Ying2019). Additionally, Gu and Dunson (Reference Gu and Dunson2021) establish strict and generic identifiability conditions for a multiclass, multilayer latent structure model. Gu and Dunson (Reference Gu and Dunson2021) could be viewed as a more general model than the one we consider as it admits a multilayered, hierarchical structure for attributes. One strength of our paper relative to Gu and Dunson (Reference Gu and Dunson2021) is that our identifiability conditions provide practitioners with clear guidance for designing nominal response assessments (e.g., forced-choice inventories). Furthermore, our identifiability conditions also provide generic conditions that are applicable to polytomous RLCMs.

Accordingly, the goal of our study is to address the aforementioned shortcomings in the literature. That is, we propose a fully exploratory framework for inferring nominal RLCM parameters and present new theory regarding model identification. The identifiability of model parameters is critical for statistical inference and we also provide researchers with guidance for designing multivariate nominal response studies.

It is also important to distinguish the models we explore in this study in comparison to polytomous latent class models. Specifically, researchers advanced RLCMs for polytomous data for both confirmatory (e.g., see Ma & de la Torre, Reference Ma and de la Torre2016; Reference Ma and de la Torre2019) and exploratory methods (Culpepper, Reference Culpepper2019; Culpepper & Balamuta, Reference Culpepper and Balamuta2021; Jimenez et al., Reference Jimenez, Balamuta and Culpepper2023). There are also several studies (Bacci et al., Reference Bacci, Bartolucci and Gnaldi2014; Bartolucci, Reference Bartolucci2007; Gnaldi et al., Reference Gnaldi, Bacci, Kunze and Greiff2020) described latent class models within an item response theory (IRT) framework with at least three link functions (i.e., graded response, partial credit, and continuation ratio). These prior studies made important contributions and demonstrated how to use link functions for modeling ordered, polytomous response data with latent class models. In contrast, an important innovation of our study is that we deploy the multinomial logistic link function, which is suitable for unordered, nominal responses.

The remainder of this paper includes six sections. The first section provides a general introduction to ULCMs and RLCMs for nominal data and the second section presents new theoretical results concerning the identifiability of RLCMs (please see Appendix for related proofs). The third section outlines a Bayesian formulation for inferring the RLCM parameter posterior distribution. The fourth section reports Monte Carlo results concerning the accuracy of the developed algorithm and the fifth section reports results from an application. The final section discusses the implications of this study and provides concluding remarks.

2. Overview of Mixture Models for Nominal Responses

We consider the setting where multivariate, nominal response data are available such that Yj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_j$$\end{document} (for j=1,,J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,\dots ,J$$\end{document} ) is a random categorical (or nominal) response with a realization yj0,,Mj-1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_j\in \left\{ 0,\dots ,M_j-1\right\} $$\end{document} where Mj2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_j\ge 2$$\end{document} denotes the number of unordered response options. We denote the random J-vector by Y=(Y1,,YJ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Y}=(Y_1,\dots , Y_J)^\top $$\end{document} and the observed vector of responses as y=(y1,,yJ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y}= (y_{1},\dots ,y_{J})^\top $$\end{document} . The support for Y \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Y}$$\end{document} is defined as y×j=1J0,,Mj-1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y}\in \times _{j=1}^J \left\{ 0,\dots ,M_j-1\right\} $$\end{document} , which implies there are j=1JMj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\prod _{j=1}^JM_j$$\end{document} possible observed response patterns. The purpose of this section is discuss the role of mixture models in understanding the multivariate, nominal response patterns. The first subsection reviews existing unstructured latent class models (ULCMs) for nominal, unordered response data. ULCMs offer a powerful framework for uncovering substantively meaningful latent classes. However, the results from ULCMs data analyses may not always be easily interpretable as researchers must decipher the meaning of latent classes by comparing many latent class parameters. Accordingly, the second subsection introduces a new general restricted latent class model (RLCM) framework, which has the benefit of directly uncovering the latent structure by providing researchers with a Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} parameter for more easily interpreting the class labels.

2.1. Unstructured Latent Class Models (ULCMs)

The goal of this section is to review the traditional ULCM framework. Let c{0,,C-1} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in \{0,\dots ,C-1\}$$\end{document} index the C underlying latent classes. In the case of nominal data, the unstructured model includes a Mj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_j$$\end{document} -vector of category response probabilities for each class and item denoted by θjc=(θjc0,,θjc,Mj-1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\theta }_{jc}=(\theta _{jc0},\dots ,\theta _{jc,M_j-1})^\top $$\end{document} so that the probability of observing a response of m on item j for members of class c is θjcm=P(Yj=m|c) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{jcm}=P(Y_j=m|c)$$\end{document} . We define Θj=(θj0,,θj,C-1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }_j=(\varvec{\theta }_{j0},\dots ,\varvec{\theta }_{j,C-1})$$\end{document} as the Mj×C \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_j\times C$$\end{document} matrix of response probabilities by response option and latent class. The goal of ULCMs is to describe the j=1JMj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\prod _{j=1}^J M_j$$\end{document} possible response patterns. ULCMs consider the case where latent classes differ in their chances of responding according to a given response pattern. The probability vector that governs the chance members of class c respond according to one of the j=1JMj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\prod _{j=1}^J M_j$$\end{document} possible response patterns is Pc=j=1Jθjc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}_c = \bigotimes _{j=1}^J\varvec{\theta }_{jc}$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\otimes $$\end{document} denotes a Kronecker product. Let π=(π0,,πC-1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }=(\pi _0,\dots ,\pi _{C-1})^\top $$\end{document} be a C-vector of structural probabilities such that πc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _c$$\end{document} denotes the chance of membership in class c and note that the model implied response pattern probability vector is P=c=0C-1πcPc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}=\sum _{c=0}^{C-1}\pi _c \mathbb {P}_c$$\end{document} .

2.2. Restricted Latent Class Models (RLCMs)

This subsection introduces a RLCM for nominal data which offers a more interpretable solution by imposing restrictions on the ULCM θjc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\theta }_{jc}$$\end{document} parameters. In particular, the RLCM adapts the ULCM to describe the j=1JMj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\prod _{j=1}^JM_j$$\end{document} response patterns by reparameterizing both the latent space and parameters. First, the RLCM defines the latent classes using a 2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^K$$\end{document} binary attribute vector α=(α1,,αK){0,1}K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }=(\alpha _1,\dots ,\alpha _K)^\top \in \{0,1\}^K$$\end{document} . Therefore, the connection between the number of classes in the ULCM and the RLCM is C=2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C=2^K$$\end{document} . An advantage of using the binary attribute profile is that researchers can interpret αk=1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _k=1$$\end{document} as denoting possession or mastery of attribute k and αk=0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _k=0$$\end{document} otherwise. The relationship between the ULCM and RLCM is also apparent when using a bijection between the binary attribute profile α \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document} and the integers c{0,,2K-1} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in \{0,\dots , 2^K-1\}$$\end{document} by defining class c=αv{0,,2K-1} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=\varvec{\alpha }^\top \varvec{v}\in \{0,\dots , 2^K-1\}$$\end{document} with v=(2K-1,2K-2,,1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{v}=(2^{K-1},2^{K-2},\dots ,1)^\top $$\end{document} .

Second, the RLCM reparameterizes the elements of θjc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\theta }_{jc}$$\end{document} using the following multinomial logit-link function

(1) θjcm=expacβjmm=0Mj-1expacβjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \theta _{jcm}=\frac{\exp \left( \varvec{a}_c^\top \varvec{\beta }_{jm} \right) }{\sum _{m'=0}^{M_j-1}\exp \left( \varvec{a}_c^\top \varvec{\beta }_{jm'} \right) } \end{aligned}$$\end{document}

where ac \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{a}_c$$\end{document} is a design vector for the attribute profile for class c and βjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_{jm}$$\end{document} is a P-vector of coefficients for item j and option m (i.e., P depends on the order of the model, P=2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P=2^K$$\end{document} if we include main and all interaction-effect terms for latent class). Note that the restriction βj0=0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_{j0}=\varvec{0}$$\end{document} is deployed for all j to identify the model. Furthermore, the restriction on βj0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_{j0}$$\end{document} implies that yj=0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_j=0$$\end{document} is the reference response so that βjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_{jm}$$\end{document} for m>0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m>0$$\end{document} quantifies the impact of the attributes on response values of yj=m \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_j=m$$\end{document} versus yj=0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_j=0$$\end{document} on item j. Let the Mj×2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_j\times 2^K$$\end{document} matrix of coefficients for item j be denoted as Bj=(βj0,,βj,Mj-1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}_j=(\varvec{\beta }_{j0},\dots ,\varvec{\beta }_{j,M_j-1})^\top $$\end{document} .

An important implication of reparameterizing θjcm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{jcm}$$\end{document} with a multinomial logit-link is that the transformed βjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_{jm}$$\end{document} parameters provide a more coherent interpretation regarding the process by which the underlying attributes relate to observed responses. For instance, we define the 2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^K$$\end{document} -vector ac \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{a}_c$$\end{document} as including main- and interaction-effect terms for latent class αv=c \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }^\top \varvec{v}=c$$\end{document} . Consequently, the elements of βjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_{jm}$$\end{document} indicate the manner by which the attributes translate into preferences for response option m relative to response option zero.

We next present an example to further illustrate the link between ULCMs and RLCMs and the interpretation of the ac \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{a}_c$$\end{document} and βjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_{jm}$$\end{document} parameters.

Example 1

Suppose K=3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=3$$\end{document} and Mj=3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_j=3$$\end{document} , so yj{0,1,2} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_j\in \{0,1,2\}$$\end{document} . In this case, the matrix of ULCM parameters is,

(2) Θj=θj00θj10θj20θj30θj40θj50θj60θj70θj01θj11θj21θj31θj41θj51θj61θj71θj02θj12θj22θj32θj42θj52θj62θj72 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\Theta }_j = \begin{bmatrix} \theta _{j00}&{}\quad \theta _{j10}&{}\quad \theta _{j20}&{}\quad \theta _{j30}&{}\quad \theta _{j40}&{}\quad \theta _{j50}&{}\quad \theta _{j60}&{}\quad \theta _{j70}\\ \theta _{j01}&{}\quad \theta _{j11}&{}\quad \theta _{j21}&{}\quad \theta _{j31}&{}\quad \theta _{j41}&{}\quad \theta _{j51}&{}\quad \theta _{j61}&{}\quad \theta _{j71}\\ \theta _{j02}&{}\quad \theta _{j12}&{}\quad \theta _{j22}&{}\quad \theta _{j32}&{}\quad \theta _{j42}&{}\quad \theta _{j52}&{}\quad \theta _{j62}&{}\quad \theta _{j72}\\ \end{bmatrix} \end{aligned}$$\end{document}

where we note that θjc0=1-m=1Mjθjcm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{jc0}=1-\sum _{m=1}^{M_j}\theta _{jcm}$$\end{document} for all c{0,1,,7} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c\in \{0,1,\dots ,7\}$$\end{document} . In this setting, the ULCM includes 2×8=16 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 8=16$$\end{document} parameters for each item. Moreover, in order to understand the meaning of the latent classes researchers would need to interpret differences in the 16·J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$16\cdot J$$\end{document} total class probabilities, which may be challenging for even a modest number of items J. The RLCM attempts to address this problem by reparameterizing both the latent classes and item parameters. In the case with K=3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=3$$\end{document} , we define the arbitrary design vector a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{a}$$\end{document} as:

(3) a=(1,α1,α2,α3,α1α2,α1α3,α2α3,α1α2α3) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{a}^\top = (1,\alpha _1,\alpha _2,\alpha _3,\alpha _1\alpha _2,\alpha _1\alpha _3,\alpha _2\alpha _3,\alpha _1\alpha _2\alpha _3) \end{aligned}$$\end{document}

so that a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{a}$$\end{document} includes all main-effect and interaction terms among the attributes and we use ac \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{a}_c$$\end{document} to refer to the design vector for attribute profile αv=c \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }^\top \varvec{v}=c$$\end{document} . The matrix of reparameterized parameters βj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_j$$\end{document} for relating α \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document} to Yj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_j$$\end{document} is

(4) Bj=βj00βj10βj20βj30βj40βj50βj60βj70βj01βj11βj21βj31βj41βj51βj61βj71βj02βj12βj22βj32βj42βj52βj62βj72. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{B}_j = \begin{bmatrix} \beta _{j00}&{}\quad \beta _{j10}&{}\quad \beta _{j20}&{}\quad \beta _{j30}&{}\quad \beta _{j40}&{}\quad \beta _{j50}&{}\quad \beta _{j60}&{}\quad \beta _{j70}\\ \beta _{j01}&{}\quad \beta _{j11}&{}\quad \beta _{j21}&{}\quad \beta _{j31}&{}\quad \beta _{j41}&{}\quad \beta _{j51}&{}\quad \beta _{j61}&{}\quad \beta _{j71}\\ \beta _{j02}&{}\quad \beta _{j12}&{}\quad \beta _{j22}&{}\quad \beta _{j32}&{}\quad \beta _{j42}&{}\quad \beta _{j52}&{}\quad \beta _{j62}&{}\quad \beta _{j72}\\ \end{bmatrix}. \end{aligned}$$\end{document}

Note we can view acβjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{a}_c^\top \varvec{\beta }_{jm}$$\end{document} as the latent response propensity for members of class c to pick option m vs. option 0. Therefore, the definition of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{a}$$\end{document} implies that βj0m \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{j0m}$$\end{document} is an intercept term that corresponds with the latent propensity for the latent class with α=0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }=\varvec{0}$$\end{document} to select option m vs. 0. Furthermore, the main-effects for α1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1$$\end{document} , α2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _2$$\end{document} , and α3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _3$$\end{document} for distinguishing response m from 0 are βj1m \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{j1m}$$\end{document} , βj2m \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{j2m}$$\end{document} , and βj3m \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{j3m}$$\end{document} , respectively. Furthermore, the two-way interaction terms are α1α2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1\alpha _2$$\end{document} , α1α3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1\alpha _3$$\end{document} , and α2α3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _2\alpha _3$$\end{document} with effects βj4m \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{j4m}$$\end{document} , βj5m \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{j5m}$$\end{document} , and βj6m \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{j6m}$$\end{document} , respectively, and the three-way interaction effect is βj7m \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{j7m}$$\end{document} . In general positive coefficients suggest preference for option m to option 0 and the interactive effects provide researchers with insight regarding the extent to which preferences are determined by a complex interplay of the attributes.

The aforementioned example demonstrates the ability of the RLCM to provide researchers with a more clear interpretation of the latent structure (i.e., the relationship between attributes and observed responses). Still, each βj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_j$$\end{document} includes many parameters to estimate and interpret. A further refinement we advance to support coherent inferences about the latent structure is to incorporate variable selection methods into the RLCM to infer which of the elements of βj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_j$$\end{document} are active (i.e., different from zero) versus inactive (i.e., equal to or near zero). In fact, the pattern of active vs. inactive elements of βj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_j$$\end{document} indicates the underlying structure and describes the process by which attributes relate to the observed response Yj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_j$$\end{document} . Accordingly, we introduce a Mj×2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_j\times 2^K$$\end{document} binary matrix Δj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_j$$\end{document} in order to indicate which elements of βj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_{j}$$\end{document} are active. Specifically, δjpm=1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{jpm}=1$$\end{document} to denote that βjpm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{jpm}$$\end{document} is active (i.e., nonzero) and δjpm=0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{jpm}=0$$\end{document} if βjpm=0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{jpm}=0$$\end{document} (i.e., inactive). Note that we generally always include the intercept and fix δj0m=1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{j0m}=1$$\end{document} for all m{1,,Mj-1} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in \{1,\dots ,M_j-1\}$$\end{document} .

We next revisit Example 1 to highlight the role of Δj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_j$$\end{document} in interpreting the latent structure.

Example 2

Reconsider the case with Mj=3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_j=3$$\end{document} and K=3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=3$$\end{document} . In this case, Δj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_j$$\end{document} is generally written as

(5) Δj=δj00δj10δj20δj30δj40δj50δj60δj70δj01δj11δj21δj31δj41δj51δj61δj71δj02δj12δj22δj32δj42δj52δj62δj72. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\Delta }_j=\begin{bmatrix} \delta _{j00}&{}\quad \delta _{j10}&{}\quad \delta _{j20}&{}\quad \delta _{j30}&{}\quad \delta _{j40}&{}\quad \delta _{j50}&{}\quad \delta _{j60}&{}\quad \delta _{j70}\\ \delta _{j01}&{}\quad \delta _{j11}&{}\quad \delta _{j21}&{}\quad \delta _{j31}&{}\quad \delta _{j41}&{}\quad \delta _{j51}&{}\quad \delta _{j61}&{}\quad \delta _{j71}\\ \delta _{j02}&{}\quad \delta _{j12}&{}\quad \delta _{j22}&{}\quad \delta _{j32}&{}\quad \delta _{j42}&{}\quad \delta _{j52}&{}\quad \delta _{j62}&{}\quad \delta _{j72}\\ \end{bmatrix}. \end{aligned}$$\end{document}

Note that δjp0=0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{jp0}=0$$\end{document} for all p=0,,2K-1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=0,\dots , 2^K-1$$\end{document} to identify the model parameters and that terms for the intercepts are generally specified as active so δj01=δj02=1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{j01}=\delta _{j02}=1$$\end{document} .

Remark 1

If Δj=1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_j = \varvec{1}$$\end{document} for all j=1,,J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1, \ldots , J$$\end{document} , which implies that all coefficients in B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}$$\end{document} are active, the latent classes have distinct response probabilities, and the RLCM is equivalent to a ULCM in this case. For additional discussion see Example 1 of Chen et al. (Reference Chen, Culpepper and Liang2020) for an exposition involving the binary response RLCM.

Note that the pattern of 1’s and 0’s in Δj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_j$$\end{document} convey different types of relationships and structures. The structure of an item is referred to as simple structure for attribute k if the response probabilities only differ by levels of αk \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _k$$\end{document} .

Definition 1

The structure of Δj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_j$$\end{document} , which is a slice of Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} for item j, is referred to as simple structure for attribute k if it satisfies the following structure:

(6) Δj=000000100δjk100100δjk,Mj-100Mj×P, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\Delta }_j= \begin{bmatrix} 0&{}\quad 0&{}\quad \cdots &{}\quad 0&{}\quad 0&{}\quad 0&{}\quad \cdots &{}\quad 0\\ 1&{}\quad 0&{}\quad \cdots &{}\quad 0&{}\quad \delta _{jk1}&{}\quad 0&{}\quad \cdots &{}\quad 0\\ \vdots &{}\quad \vdots &{}\quad &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots &{}\quad &{}\quad \vdots \\ 1&{}\quad 0&{}\quad \cdots &{}\quad 0&{}\quad \delta _{jk,M_j-1}&{}\quad 0&{}\quad \cdots &{}0\\ \end{bmatrix}_{M_j \times P}, \end{aligned}$$\end{document}

and m=1Mj-1δjkm1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{m=1}^{M_j-1} \delta _{jkm}\ge 1$$\end{document} where P generally equals 2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^K$$\end{document} .

Remark 2

Note that for convenience of notation that our identifiability proof below supposes that item j is simple structure for attribute j.

Example 3

Consider M1=M2=3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_1=M_2=3$$\end{document} , P=2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P=2^K$$\end{document} and J=2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J=2$$\end{document} and note that examples of Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} matrices that satisfy simple structure according to Definition 1 are:

(7) Δ1=000000001100000011000000, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\Delta }_1 = \begin{bmatrix} 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 1&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 1&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ \end{bmatrix}, \end{aligned}$$\end{document}
(8) Δ2=000000001000000010100000. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\Delta }_2 = \begin{bmatrix} 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ 1&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ \end{bmatrix}. \end{aligned}$$\end{document}

Items 1 and 2 suppose the item is simple structure such that the probability of selecting the responses only relates to standing on α1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1$$\end{document} in Δ1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_1$$\end{document} and α2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _2$$\end{document} for Δ2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_2$$\end{document} . Δ1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_1$$\end{document} indicates that only the main-effect for α1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _1$$\end{document} differentiates between response option 1 vs. 0 and 2 vs. 0. In contrast, for item 2, Δ2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_2$$\end{document} represents the case where the main-effect for α2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _2$$\end{document} is only active for differentiating between response option 2 vs. 0. The associated B1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}_1$$\end{document} and B2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}_2$$\end{document} matrices for the structure parameters Δ1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_1$$\end{document} and Δ2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_2$$\end{document} are:

(9) B1=00000000β101β111000000β102β112000000, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{B}_1 = \begin{bmatrix} 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ \beta _{101}&{}\quad \beta _{111}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ \beta _{102}&{}\quad \beta _{112}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ \end{bmatrix}, \end{aligned}$$\end{document}
(10) B2=00000000β2010000000β2020β22200000. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{B}_2 = \begin{bmatrix} 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ \beta _{201}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ \beta _{202}&{}\quad 0&{}\quad \beta _{222}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0\\ \end{bmatrix}. \end{aligned}$$\end{document}

Let Θj(Bj) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }_j(\varvec{B}_j)$$\end{document} denote the latent class response probabilities associated with the RLCM Bj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}_j$$\end{document} matrix. The presence of structure in Bj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}_j$$\end{document} and Δj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_j$$\end{document} implies that elements of Θj(Bj) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }_j(\varvec{B}_j)$$\end{document} are restricted to be equal.

Example 4

The rows of Δ1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_1$$\end{document} in Eq. 7 imply that certain latent classes have a common probability of selecting response 1 vs 0 and 2 vs. 0. That is, latent classes that do not possess the first attribute such that α=(0,α2,α3) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }=(0,\alpha _2,\alpha _3)$$\end{document} have common response probabilities for selecting options 0, 1, and 2 of θ100 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{100}$$\end{document} , θ101 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{101}$$\end{document} , and θ102 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{102}$$\end{document} , respectively, whereas classes with the first attribute with α=(1,α2,α3) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }=(1,\alpha _2,\alpha _3)$$\end{document} have common response probabilities of θ140 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{140}$$\end{document} , θ141 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{141}$$\end{document} , and θ142 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{142}$$\end{document} . The Θ1(B1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }_1(\varvec{B}_1)$$\end{document} in this case is

(11) Θ1(B1)=θ100θ100θ100θ100θ140θ140θ140θ140θ101θ101θ101θ101θ141θ141θ141θ141θ102θ102θ102θ102θ142θ142θ142θ142, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\Theta }_1(\varvec{B}_1) = \begin{bmatrix} \theta _{100}&{}\quad \theta _{100}&{}\quad \theta _{100}&{}\quad \theta _{100}&{}\quad \theta _{140}&{}\quad \theta _{140}&{}\quad \theta _{140}&{}\quad \theta _{140}\\ \theta _{101}&{}\quad \theta _{101}&{}\quad \theta _{101}&{}\quad \theta _{101}&{}\quad \theta _{141}&{}\quad \theta _{141}&{}\quad \theta _{141}&{}\quad \theta _{141}\\ \theta _{102}&{}\quad \theta _{102}&{}\quad \theta _{102}&{}\quad \theta _{102}&{}\quad \theta _{142}&{}\quad \theta _{142}&{}\quad \theta _{142}&{}\quad \theta _{142}\\ \end{bmatrix}, \end{aligned}$$\end{document}

where the columns of Θ1(B1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }_1(\varvec{B}_1)$$\end{document} are organized according to the binary-integer bijection and

(12) θ10=(θ100,θ101,θ102)=1m=02exp(β10m)1,exp(β101),exp(β102), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}{} & {} \varvec{\theta }_{10}=(\theta _{100},\theta _{101},\theta _{102})^\top = \frac{1}{\sum _{m=0}^2 \exp (\beta _{10m})}\left( 1,\exp (\beta _{101}),\exp (\beta _{102})\right) , \end{aligned}$$\end{document}
(13) θ14=(θ140,θ141,θ142)=1m=02exp(β10m+β11m)1,exp(β101+β111),exp(β102+β112). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}{} & {} \varvec{\theta }_{14}=(\theta _{140},\theta _{141},\theta _{142})^\top = \frac{1}{\sum _{m=0}^2 \exp (\beta _{10m}+\beta _{11m})}\left( 1,\exp (\beta _{101}+\beta _{111}), \exp (\beta _{102}+\beta _{112})\right) .\nonumber \\ \end{aligned}$$\end{document}

In contrast, the rows of Δ2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_2$$\end{document} in Eq. 8 imply a different collection of elements are constrained equal in Θ2(B2) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }_2(\varvec{B}_2)$$\end{document} . Latent classes that do not possess the second attribute such that α=(α1,0,α3) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }=(\alpha _1,0,\alpha _3)$$\end{document} have common response probabilities for selecting options 0, 1, and 2 of θ200 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{200}$$\end{document} , θ201 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{201}$$\end{document} , and θ202 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{202}$$\end{document} , respectively, whereas classes with the second attribute with α=(α1,1,α3) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }=(\alpha _1,1,\alpha _3)$$\end{document} have common response probabilities of θ220 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{220}$$\end{document} , θ221 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{221}$$\end{document} , and θ222 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{222}$$\end{document} . The Θ2(B2) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }_2(\varvec{B}_2)$$\end{document} in this case is

(14) Θ2(B2)=θ200θ200θ220θ220θ200θ200θ220θ220θ201θ201θ221θ221θ201θ201θ221θ221θ202θ202θ222θ222θ202θ202θ222θ222, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\Theta }_2(\varvec{B}_2) = \begin{bmatrix} \theta _{200}&{}\quad \theta _{200}&{}\quad \theta _{220}&{}\quad \theta _{220}&{}\quad \theta _{200}&{}\quad \theta _{200}&{}\quad \theta _{220}&{}\quad \theta _{220}\\ \theta _{201}&{}\quad \theta _{201}&{}\quad \theta _{221}&{}\quad \theta _{221}&{}\quad \theta _{201}&{}\quad \theta _{201}&{}\quad \theta _{221}&{}\quad \theta _{221}\\ \theta _{202}&{}\quad \theta _{202}&{}\quad \theta _{222}&{}\quad \theta _{222}&{}\quad \theta _{202}&{}\quad \theta _{202}&{}\quad \theta _{222}&{}\quad \theta _{222}\\ \end{bmatrix}, \end{aligned}$$\end{document}

where the columns of Θ2(B2) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }_2(\varvec{B}_2)$$\end{document} are organized according to the binary-integer bijection and

(15) θ20=(θ200,θ201,θ202)=1m=02exp(β20m)1,exp(β201),exp(β202), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\theta }_{20}=(\theta _{200},\theta _{201},\theta _{202})^\top = \frac{1}{\sum _{m=0}^2 \exp (\beta _{20m})}\left( 1,\exp (\beta _{201}),\exp (\beta _{202})\right) , \end{aligned}$$\end{document}
(16) θ22=(θ220,θ221,θ222)=1,exp(β201),exp(β202+β222)1+exp(β201)+exp(β202+β222). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\theta }_{22}=(\theta _{220},\theta _{221},\theta _{222})^\top = \frac{\left( 1,\exp (\beta _{201}),\exp (\beta _{202}+\beta _{222})\right) }{1+ \exp (\beta _{201})+ \exp (\beta _{202}+\beta _{222})}. \end{aligned}$$\end{document}

Remark 3

Note that Δj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_j$$\end{document} can also denote different structures where multiple attributes relate to response variables. For instance, Δj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_j$$\end{document} might specify the inclusion of interaction terms so that response probabilities are shaped by a more complex relationship of the attributes. Furthermore, we can also draw a connection between the ULCM and RLCM where Δj=(0,1Mj-1)1P \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_j=(0,\varvec{1}_{M_j-1}^\top )^\top \varvec{1}_P^\top $$\end{document} corresponds with the ULCM setting with distinct elements in Θj(Bj) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }_j(\varvec{B}_j)$$\end{document} .

3. Identifiability Issue

3.1. Model Identifiability

As introduced in the previous section, the probability distribution of latent classes is given by π=(πc)[0,1]2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }=(\pi _c)^\top \in [0,1]^{2^K}$$\end{document} with πc=1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \pi _c =1$$\end{document} . Coefficients array B=(B1,,BJ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}=(\varvec{B}_1, \ldots ,\varvec{B}_J)$$\end{document} is a three-dimensional array, where Bj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}_j$$\end{document} is the j-th slice of B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}$$\end{document} with size Mj×P \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_j\times P$$\end{document} . Then, we denote the parameter space of (π,B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varvec{\pi },\varvec{B})$$\end{document} by

(17) Ω(π,B)={(π,B):πΩ(π),BΩ(B)}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Omega (\varvec{\pi }, \varvec{B})=\{(\varvec{\pi }, \varvec{B}):\varvec{\pi }\in \Omega (\varvec{\pi }),\varvec{B}\in \Omega (\varvec{B})\}, \end{aligned}$$\end{document}

where Ω(π)={π[0,1]2K:cπc=1} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\varvec{\pi })=\{\varvec{\pi }\in [0,1]^{2^K}:\sum _c \pi _c =1\}$$\end{document} , and Ω(B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\varvec{B})$$\end{document} represents the parameter space of the coefficients array B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}$$\end{document} , which could be the whole real space RJ×P×jMj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{J\times P\times \sum _j M_j}$$\end{document} , or a subset of RJ×P×jMj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^{J\times P\times \sum _j M_j}$$\end{document} if constrained by the Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} .

Definition 2

(Strict Identifiability) The parameters (π,B)Ω(π,B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varvec{\pi }, \varvec{B}) \in \Omega (\varvec{\pi }, \varvec{B})$$\end{document} are identifiable if

P(Y=yπ,B)=P(Y=yπ¯,B¯)(π,B)(π¯,B¯), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} P(\varvec{Y} =\varvec{y} \mid \varvec{\pi }, \varvec{B})=P(\varvec{Y} =\varvec{y} \mid \bar{\varvec{\pi }},\bar{\varvec{B}}) \Longleftrightarrow (\varvec{\pi },\varvec{B}) \sim (\bar{\varvec{\pi }},\bar{\varvec{B}}), \end{aligned}$$\end{document}

where (π¯,B¯) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\bar{\varvec{\pi }}, \bar{\varvec{B}})$$\end{document} is another value from the parameter space Ω(π,B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\varvec{\pi }, \varvec{B})$$\end{document} and “ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document} ” means two parameter values are equivalent up to label switching of attributes.

3.2. Generic Identifiability

Generic identifiability, which is a weaker notion of identifiability than Definition 2, was first introduced in Allman et al. (Reference Allman, Matias and Rhodes2009). Generic identifiability allows the existence of some exceptional values of parameters for which strict identifiability does not hold, as long as all non-identifiable parameters form a Lebesgue measure zero set within the parameter space. Given that non-identifiable parameters exist in a set of measure zero, one is unlikely to face identifiability problems in performing inference. Thus, generic identifiability is generally sufficient for data analysis purposes.

However, the generic identifiability condition shown in Allman et al. (Reference Allman, Matias and Rhodes2009) cannot be applied in this paper. Under the setting of Allman et al. (Reference Allman, Matias and Rhodes2009), the parameter space Ω(B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\varvec{B})$$\end{document} is the whole real space RJ×P×jMj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^{J\times P\times \sum _j M_j}$$\end{document} , whereas the parameter space Ω(B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\varvec{B})$$\end{document} in our RLCM is restricted by the structure of Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} . The dimension of Ω(B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\varvec{B})$$\end{document} might vary with different Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} arrays, i.e., the parameter space of B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}$$\end{document} restricted by Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} might be a measure zero subspace of another parameter space of B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}$$\end{document} restricted by Δ~ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\varvec{\Delta }}$$\end{document} . So, it is important to discuss the generic identifiability issue within a parameter space with a fixed Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} .

Therefore, in order to discuss generic identifiability for our RLCM, we need to define the parameter space Ω(B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\varvec{B})$$\end{document} by taking into account the sparsity structure due to the Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} array. Similar to Definition 17, we denote the model parameter space with a given Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} by

(18) ΩΔ(π,B)={(π,B):πΩ(π),BΩΔ(B)}. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Omega _{\varvec{\Delta }}(\varvec{\pi }, \varvec{B})=\{(\varvec{\pi }, \varvec{B}):\varvec{\pi }\in \Omega (\varvec{\pi }),\varvec{B}\in \Omega _{\varvec{\Delta }}(\varvec{B})\}. \end{aligned}$$\end{document}

Coefficients in ΩΔ(B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }}(\varvec{B})$$\end{document} are active when corresponding elements in Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} are equal to 1, so the parameter space ΩΔ(B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }}(\varvec{B})$$\end{document} would be RΔ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb R^{\mid \varvec{\Delta }\mid }$$\end{document} , where Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mid \varvec{\Delta }\mid $$\end{document} is the total sum of entries of Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} . For generic identifiability, it suffices to consider the parameter space ΩΔ(π,B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }}(\varvec{\pi }, \varvec{B})$$\end{document} with a given sparsity structure Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} .

Let SΔ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\varvec{\Delta }}$$\end{document} denote the set of non-identifiable parameters from Ω(π,B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\varvec{\pi },\varvec{B})$$\end{document} :

(19) SΔ={(π,B):P(Y=yπ,B)=P(Y=yπ¯,B¯),(π,B)(π¯,B¯),(π,B)ΩΔ(π,B),(π¯,B¯)ΩΔ¯(π,B)}. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \begin{aligned} S_{\varvec{\Delta }}=\{(\varvec{\pi },\varvec{B}):&\ P(\varvec{Y} =\varvec{y} \mid \varvec{\pi },\varvec{B})= P(\varvec{Y} =\varvec{y} \mid \bar{\varvec{\pi }}, \bar{\varvec{B}}),\\ ( \varvec{\pi },\varvec{B}) \not \sim (\bar{\varvec{\pi }},&\bar{\varvec{B}}),\ (\varvec{\pi }, \varvec{B})\in \Omega _{\varvec{\Delta }}(\varvec{\pi }, \varvec{B}),(\bar{\varvec{\pi }}, \bar{\varvec{B}})\in \Omega _{\bar{\varvec{\Delta }}}(\varvec{\pi }, \varvec{B})\}. \end{aligned} \end{aligned}$$\end{document}

Remark 4

The non-identifiable parameters (π,B)SΔ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varvec{\pi }, \varvec{B}) \in S_{\varvec{\Delta }}$$\end{document} could be due to some other parameters (π¯,B¯) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\bar{\varvec{\pi }}, \bar{\varvec{B}})$$\end{document} with a different sparsity structure Δ¯ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\varvec{\Delta }}$$\end{document} .

If the non-identifiable parameter set SΔ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\varvec{\Delta }}$$\end{document} is of measure zero within parameter space ΩΔ(π,B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }}(\varvec{\pi },\varvec{B})$$\end{document} , then we say ΩΔ(π,B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }}(\varvec{\pi },\varvec{B})$$\end{document} is a generically identifiable parameter space.

Definition 3

(Generic Identifiability) The parameter space ΩΔ(π,B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }}(\varvec{\pi },\varvec{B})$$\end{document} is generically identifiable, if the Lebesgue measure of SΔ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\varvec{\Delta }}$$\end{document} with respect to parameter space ΩΔ(π,B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }}(\varvec{\pi },\varvec{B})$$\end{document} is zero.

3.3. Identifiability Conditions

In this section, we propose strict and generic identifiability conditions for our RLCM. We start with introducing the form of Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} as follows.

The sparse 3-dimensional array Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} takes the form

Δ=Δ1Δ2Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\Delta }=\left( \begin{array}{c}{\varvec{\Delta }^1}\\ {\varvec{\Delta }^2}\\ {\varvec{\Delta }^\prime }\end{array}\right) \end{aligned}$$\end{document}

after a permutation of items, where Δ1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }^1$$\end{document} and Δ2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }^2$$\end{document} contain K slices of Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} and Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }^\prime $$\end{document} contains the rest of J-2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J-2K$$\end{document} slices. We use Δji \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_j^i$$\end{document} to denote the j-th slice of Δi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }^i$$\end{document} for item j.

Theorem 1

(Strict Identifiability) The parameter space Ω(π,B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\varvec{\pi },\varvec{B})$$\end{document} is strictly identifiable if the following two conditions are satisfied:

  1. For j=1,,K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,\ldots ,K$$\end{document} , Δj1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _j^1$$\end{document} and Δj2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{j}^2$$\end{document} satisfy simple structure shown in Definition 1 and Remark 2;

  2. For any two classes of subjects, there exists at least one item in Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }^\prime $$\end{document} such that they have different positive response probabilities for some response option.

Remark 5

The Δj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_j$$\end{document} shown in Example 3 satisfies the structure in A1.

Theorem 2

(Generic Identifiability) The parameter space ΩΔ(π,B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }}(\varvec{\pi },\varvec{B})$$\end{document} is generically identifiable if the following two conditions are satisfied:

  1. For j=1,,K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,\ldots ,K$$\end{document} , Δj1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _j^1$$\end{document} and Δj2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{j}^2$$\end{document} satisfy the following structure:

    (20) Δj=000000δjj1δjj,Mj-1Mj×P, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\Delta }_j= \begin{bmatrix} 0&{}0&{}\cdots &{}0&{}0&{}0&{}\cdots &{}0\\ *&{}*&{}\cdots &{}*&{}\delta _{jj1}&{}*&{}\cdots &{}*\\ \vdots &{}\vdots &{}&{}\vdots &{}\vdots &{}\vdots &{}&{}\vdots \\ *&{}*&{}\cdots &{}*&{}\delta _{jj,M_j-1}&{}*&{}\cdots &{}*\\ \end{bmatrix}_{M_j \times P}, \end{aligned}$$\end{document}
    and m=1Mj-1δjjm1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{m=1}^{M_j-1} \delta _{jjm}\ge 1$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document} can be either 0 or 1, P generally equals 2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^K$$\end{document} .
  2. Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }^{\prime }$$\end{document} satisfies the condition that for every k=1,,K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1,\ldots ,K$$\end{document} there exists a j>2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j > 2K$$\end{document} , such that m=1Mj-1δjkm1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{m=1}^{M_j-1} \delta _{jkm}\ge 1$$\end{document} .

Remark 6

Condition (B2) requires that there is a least one item in the last J-2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J-2K$$\end{document} items where attribute k loads onto the main-effect for at least one response option.

4. Bayesian Formulation for the Nominal RLCM

Following the same setting in previous sections, consider a RLCM with N subjects, J items with Mj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_j$$\end{document} ( j=1,,J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,\ldots ,J$$\end{document} ) unordered response options for each item j, and K skills. We use subscript i=1,,N \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,\ldots ,N$$\end{document} to index subjects, j=1,,J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,\ldots ,J$$\end{document} to index items, m=0,,Mj-1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=0,\ldots ,M_j-1$$\end{document} to index options of each item, and c=0,,2K-1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=0,\ldots ,2^K-1$$\end{document} to index latent classes. Let αi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_{i}$$\end{document} denote the attribute profile of subject i, and Yij \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_{ij}$$\end{document} denote the response of subject i to item j. The likelihood of observing a sample of N responses to J items is

(21) pY=yB,π=i=1Nαc{0,1}Kπcj=1Jm=0Mj-1expaiβjmm=0Mj-1expaiβjm1(yij=m). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p\left( \varvec{Y}=\varvec{y}\mid \varvec{B}, \varvec{\pi }\right) =\prod _{i=1}^{N}\sum _{\varvec{\alpha }_c\in \{0,1\}^K} \pi _c\prod _{j=1}^{J}\prod _{m=0}^{M_j-1}\left( \frac{\exp \left( \varvec{a}_i^\top \varvec{\beta }_{jm} \right) }{\sum _{m'=0}^{M_j-1}\exp \left( \varvec{a}_i^\top \varvec{\beta }_{jm'} \right) }\right) ^{\mathbb {1}(y_{ij}=m)}. \end{aligned}$$\end{document}

The posterior distribution of all parameters for the nominal RLCM is given by

(22) p(α,B,Δ,γ,σβ2,π|y)p(y|α,B)p(α|π)p(π)p(B|Δ,σβ2)p(σβ2)p(Δ|γ)p(γ). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{\alpha },\varvec{B},\varvec{\Delta },\gamma ,\sigma _{\beta }^{2},\varvec{\pi }|\varvec{y})\propto p(\varvec{y}|\varvec{\alpha },\varvec{B})p(\varvec{\alpha }|\varvec{\pi })p(\varvec{\pi })p(\varvec{B}|\varvec{\Delta },\sigma _\beta ^2)p(\sigma _\beta ^2)p(\varvec{\Delta }|\gamma )p(\gamma ). \end{aligned}$$\end{document}

Then, we formulate the RLCM Bayesian model as follows.

We outline our Bayesian model and priors. Specifically, we use a categorical likelihood conditioned upon attributes and item parameters,

(23) Yij|αv=c,Bjcategoricalθjc(Bj). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} Y_{ij}|\varvec{\alpha }^\top \varvec{v}=c,\varvec{B}_{j}\sim \text {categorical}\left( \varvec{\theta }_{jc}(\varvec{B}_j)\right) . \end{aligned}$$\end{document}

We also use a categorical prior for attributes conditioned upon the latent class probabilities,

(24) αi|πcategorical(π) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\alpha }_i|\varvec{\pi }\sim \text {categorical}(\varvec{\pi }) \end{aligned}$$\end{document}

and a conjugate Dirichlet prior for the latent class probabilities, πDirichlet(d0) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }\sim \text {Dirichlet}(\varvec{d}_0)$$\end{document} where d0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{d}_0$$\end{document} is a fixed constant vector.

We use a stochastic search variable selection priors for the (jpm) elements of B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}$$\end{document} and Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} :

(25) βjpmδjpm,σβ2N(0,σβ2)δjpm=1N(0,σβ2/D)δjpm=0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \beta _{jpm}&\mid \delta _{jpm},\sigma _\beta ^2 \sim \left\{ \begin{array}{ll} N(0, \sigma _{\beta }^{2}) &{} \delta _{jpm}=1 \\ N(0, \sigma _{\beta }^{2}/D) &{} \delta _{jpm}=0 \end{array}\right. ,\end{aligned}$$\end{document}
(26) δjpmγBernoulli(γ), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \delta _{jpm}&\mid \gamma \sim Bernoulli(\gamma ), \end{aligned}$$\end{document}

where B=(B1,,BJ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}=(\varvec{B}_1,\dots ,\varvec{B}_J)^\top $$\end{document} satisfies the generic identifiable condition shown in Theorem 2, and the intercept is always set active with δj0m=1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{j0m}=1$$\end{document} . Furthermore, D is a large fixed constant (e.g., we consider D=100 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=100$$\end{document} , 1000) that is used reduce the variance for the spike distribution for the case with δjpm=0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{jpm}=0$$\end{document} . The priors for the hyper-parameters for the coefficients and activeness parameters are:

(27) σβ2IGamma(ασ,βσ), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sigma _{\beta }^2&\sim IGamma(\alpha _{\sigma },\beta _{\sigma }),\end{aligned}$$\end{document}
(28) γBeta(a,b). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \gamma&\sim Beta(a,b). \end{aligned}$$\end{document}

Here (ασ,βσ,D,a,b,d0) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha _{\sigma },\beta _{\sigma },D,a,b,\varvec{d}_0)$$\end{document} are hyper-parameters.

Model parameters of the nominal RLCM are inferred through applying the Polya-gamma data augmentation approach for multinomial logistic regression (Holmes & Held, Reference Holmes and Held2006; Polson et al., Reference Polson, Scott and Windle2013) along with the stochastic search variable selection algorithm (George & McCulloch, Reference George and McCulloch1993) to infer the latent structure. Then, the Gibbs sampling algorithm is implemented from the posterior distribution of model parameters, which is given in Appendix 7. Full sampling algorithm is represented in Algorithm 1. In order to address issues with respect to poor starting values we use a combination of k-means clustering and factor analysis to specify starting values (see the description in Appendix 7).

5. Monte Carlo Simulation Study

5.1. Settings

In this section, we report results from a Monte Carlo experiment to evaluate the performance of Algorithm 1. We conducted the simulation study under different number of attributes (i.e., K=2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=2$$\end{document} and 3), correlations among the attributes (i.e., ρ=0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho =0$$\end{document} and 0.25), and sample size (i.e., N=1000 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=1000$$\end{document} , 2000, 5000 and 10000).

For the ρ=0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho =0$$\end{document} case, the attribute profile α=(α1,,αK) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }=(\alpha _{1},\ldots ,\alpha _{K})^{\top }$$\end{document} is generated uniformly from all possible 2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^K$$\end{document} cases, so the latent class membership probabilities are π=(1/2K,,1/2K) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }= (1/2^K,\ldots ,1/2^K)^\top $$\end{document} . For the ρ>0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >0$$\end{document} case, the dependence among attribute profiles is introduced using the method of Chiu et al. (Reference Chiu, Douglas and Li2009). Suppose Z=(Z1,,ZK) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Z}=(Z_1,\ldots ,Z_K)^{\top }$$\end{document} follows a multivariate normal distribution N(0,Σ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(\varvec{0}, \varvec{\Sigma })$$\end{document} with unit variance and correlation ρ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} , where Σ=(1-ρ)IK+ρ1K1K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Sigma }=(1-\rho )\varvec{I}_K + \rho \varvec{1}_{K}\varvec{1}_{K}^\top $$\end{document} and 1K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{1}_{K}$$\end{document} is a column vector of 1 with length K. Then, the attribute profile α \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document} is given by αk=I(ZkΦ-1(kK+1)) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{k}={\mathcal {I}}(Z_k \ge \Phi ^{-1}(\frac{k}{K+1}))$$\end{document} , k=1,,K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1,\ldots ,K$$\end{document} , where Φ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} is the cumulative distribution function of the standard normal distribution. In this case, the data generating values for π \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }$$\end{document} are computed from integrals of the multivariate normal distribution (Chen et al., Reference Chen, Liu, Xu and Ying2015; Culpepper & Balamuta, Reference Culpepper and Balamuta2021).

We assume that there are J=18 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J=18$$\end{document} items, and Mj=4 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_j=4$$\end{document} unordered options for each item j. For reparameterized latent class variable α \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document} shown in Eq. 3, we only include two-way interaction terms among the attributes. Our model does not explicitly contain Q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document} matrices, therefore, we recover the Q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document} matrices, implied by Δm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }_m$$\end{document} for each option m=1,2,3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=1,2,3$$\end{document} , using the method shown in Chen et al. (Reference Chen, Culpepper and Liang2020). Then, the true Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} and true Q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document} matrices for each option are shown as follows (columns in Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} follow the same order as the design vector shown in Eq. 3):

  • Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} cube with K=2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=2$$\end{document}

    (29) Δm=1=101011001010110010101100101011001010110010101100101011001010110010101100,Δm=2=101011001010110011001100101011001010101010101100101011001100101011001010,Δm=3=110010101010110011001100110010101010101011001100101011001010110010101010 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\Delta }_{m=1}= \left( \begin{array}{llll} 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \end{array}\right) , \quad \varvec{\Delta }_{m=2}=\left( \begin{array}{llll} 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \end{array}\right) , \quad \varvec{\Delta }_{m=3}=\left( \begin{array}{llll} 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \end{array}\right) \end{aligned}$$\end{document}
  • Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} cube with K=3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=3$$\end{document}

    (30) Δm=1=100100010100001100000100100010100001100000100100010100001100000100100010100001100000100100010100001100000100100010100001100000,Δm=2=101000010100001010000101000010010001001000100100010010001001000110000011000001100000110000010100001100000100100011000001010000,Δm=3=101000011000001010000101000011000001001000101000010010001100000100100010010001100000101000011000001001000100100011000001010000 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\Delta }_{m=1}= \left( \begin{array}{llllllll} 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \end{array}\right) , \varvec{\Delta }_{m=2}= \left( \begin{array}{llllllll} 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \end{array}\right) , \varvec{\Delta }_{m=3}= \left( \begin{array}{llllllll} 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \end{array}\right) \end{aligned}$$\end{document}
  • Q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document} matrices with K=2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=2$$\end{document}

    (31) Qm=1=011001100110011001100110011001100110,Qm=2=011001101010011001010110011010011001,Qm=3=100101101010100101011010011001100101 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\varvec{Q}}_{m=1}= \left( \begin{array}{ll} 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \end{array}\right) , \quad {\varvec{Q}}_{m=2}=\left( \begin{array}{ll} 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 1 &{} 0 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 0 &{} 1 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \end{array}\right) , \quad {\varvec{Q}}_{m=3}=\left( \begin{array}{ll} 1 &{} 0 \\ 0 &{} 1 \\ 0 &{} 1 \\ 1 &{} 0 \\ 1 &{} 0 \\ 1 &{} 0 \\ 1 &{} 0 \\ 0 &{} 1 \\ 0 &{} 1 \\ 0 &{} 1 \\ 1 &{} 0 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 0 &{} 1 \end{array}\right) \end{aligned}$$\end{document}
  • Q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document} matrices with K=3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=3$$\end{document}

    (32) Qm=1=001010100001010100001010100001010100001010100001010100,Qm=2=010010010010001001001001001100100100100010100001100010,Qm=3=010100010010100001010001100001001100010100001001100010 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\varvec{Q}}_{m=1}= \left( \begin{array}{lll} 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \end{array}\right) , \quad {\varvec{Q}}_{m=2}=\left( \begin{array}{lll} 0 &{} 1 &{} 0 \\ 0 &{} 1 &{} 0 \\ 0 &{} 1 &{} 0 \\ 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 1 \\ 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 \\ 1 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 \end{array}\right) , \quad {\varvec{Q}}_{m=3}=\left( \begin{array}{lll} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 \\ 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 1 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 1 \\ 1 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 \\ 0 &{} 0 &{} 1 \\ 1 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 \end{array}\right) \end{aligned}$$\end{document}

Given Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} , we generate coefficients in B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}$$\end{document} according to their prior distribution shown in Eq. 25 using σβ2=1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _\beta ^2 = 1$$\end{document} . For hyper-parameters presented in the previous section, we have ασ=βσ=a=b=1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{\sigma }=\beta _{\sigma }=a=b=1$$\end{document} , d0=12K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{d}_0 = \varvec{1}_{2^K}$$\end{document} , and D=100 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D= 100$$\end{document} . We use a Markov chain of length 20,000 with a 10,000 burn-in period for K=2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = 2$$\end{document} , and a chain length of 30,000 with a 20,000 burn-in period for K=3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = 3$$\end{document} .

5.2. Results

We repeated the simulation study 100 times for each setting. For model performance, we use several metrics to evaluate parameter recovery. Specifically, we report the average element-wise accuracy rate (EAR) for Q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document} by comparing the estimated Q^ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\varvec{Q}}$$\end{document} and the true Q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document} matrix, where Q^ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\varvec{Q}}$$\end{document} is recovered by aggregating B^ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\varvec{B}}$$\end{document} samples after burn-in period (Chen et al., Reference Chen, Culpepper and Liang2020). Note that we transform B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}$$\end{document} to Θ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }$$\end{document} for every sampled value using Eq. 1 and compute the point estimate Θ^ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\varvec{\Theta }}$$\end{document} as the mean of all sampled Θ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }$$\end{document} arrays after the burn-in period. We compute the mean absolute deviation (MAD) to assess the accuracy of the estimated latent class response probabilities Θ^ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\varvec{\Theta }}$$\end{document} , and report the proportion of attribute profiles that are correctly estimated.

It is important to mention how we address the label-switching problem for the RLCM and ULCM. Similar to latent class models, the exploratory RLCM is identified up to label-switching. However, the RLCM has fewer permutations than the ULCM. For instance, the ULCM as (2K)! \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2^K)!$$\end{document} possible arrangements whereas the RLCM has K!×2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K!\times 2^K$$\end{document} arrangements (i.e., there are K! ways to permute the order of attributes and 2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^K$$\end{document} ways of permuting the attribute levels). Note that for each replication we draw values from the posterior and then compare posterior means of our parameters (e.g., the θ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} ’s or β \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} ’s) with all K!×2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K!\times 2^K$$\end{document} arrangements with the data generating model parameters in order to evaluate parameter recovery. We select the permutations for the ULCM and RLCM that minimizes the difference between the estimates and data generating value. It is important to note that we do not find evidence of label-switching within chain.

Simulation results in Table 1 show a good recovery for model parameters. It suggests that for fixed K, as the sample size gets larger, the MAD of Θ^ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\varvec{\Theta }}$$\end{document} and π \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }$$\end{document} become smaller and the EARs of Q^ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\varvec{Q}}$$\end{document} matrices become larger. The EARs of Q^ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\varvec{Q}}$$\end{document} matrices are higher for smaller K, which is expected given that the number of unknown model parameters that must be estimated increases with larger K. The simulation results also provide evidence that a positive correlation among attributes, represented by ρ>0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho > 0$$\end{document} , results in slightly larger MADs for Θ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }$$\end{document} in some instances, and this impact is more systematic for K=3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=3$$\end{document} . Although ρ=0.25 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho =0.25$$\end{document} slightly decreases recovery of Θ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }$$\end{document} , π \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }$$\end{document} , and Q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document} , the results in Table 1 show attribute classification accuracy improves by a few percentage points. Overall, the classification accuracy is at acceptable levels and generally exceeds 70% for most scenarios.

We also conduct Monte Carlo experiment for denser Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} and Q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document} compared with those shown in Eqs. 2932, true Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} , Q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document} matrices and simulation results are given in Appendix 7. Table 6 shows similar model parameter recovery compared with the results shown in Table 1.

5.3. Unstructured Latent Class Models (ULCMs)

We want to compare our model performance with ULCMs, which assume that there’s no latent structure between latent attribute classes and observed response variables. Following the same setting as we represented for the nominal RLCM, the likelihood of observing a sample of N independent responses to J items is

(33) p(Y=y|α,Θ)=j=1Jc=02K-1m=0Mj-1θjcnjcm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{Y}=\varvec{y}|\varvec{\alpha },\varvec{\Theta })=\prod _{j=1}^J\prod _{c=0}^{2^K-1}\prod _{m=0}^{M_j-1} \theta _{jc}^{n_{jcm} }, \end{aligned}$$\end{document}

where njcm=i=1n=I(yij=m)I(αiv=c) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_{jcm}=\sum _{i=1}^n={\mathcal {I}}(y_{ij}=m)\mathcal I(\varvec{\alpha }_{i}^\top \varvec{v}=c)$$\end{document} . Then, the posterior distribution of all parameters for the nominal ULCM is given by

(34) p(α,Θ,π|y)p(y|α,Θ)p(Θ)p(α|π)p(π). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{\alpha },\varvec{\Theta },\varvec{\pi }|\varvec{y})\propto p(\varvec{y}|\varvec{\alpha },\varvec{\Theta })p(\varvec{\Theta })p(\varvec{\alpha }|\varvec{\pi })p(\varvec{\pi }). \end{aligned}$$\end{document}

Below is the Bayesian framework for our nominal ULCM. Given attribute profile α \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document} and class-response probability matrix Θ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }$$\end{document} , response data follow a categorical distribution

(35) Yij|αiv=c,θjcCategorical(θjc). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} Y_{ij}|\varvec{\alpha }_i^\top \varvec{v}=c,\varvec{\theta }_{jc}\sim \text {Categorical}(\varvec{\theta }_{jc}). \end{aligned}$$\end{document}

We use a Dirichlet prior for the class-response probability vectors

(36) θjcDirichlet(dMj), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\theta }_{jc}\sim \text {Dirichlet}(\varvec{d}_{M_j}), \end{aligned}$$\end{document}

and a categorical prior for attributes conditioned upon the latent class probabilities,

(37) αi|πCategorical(π) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\alpha }_i|\varvec{\pi }\sim \text {Categorical}(\varvec{\pi }) \end{aligned}$$\end{document}

with a conjugate Dirichlet prior for the latent class probabilities πDirichlet(d0) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }\sim \text {Dirichlet}(\varvec{d}_0)$$\end{document} , where dM \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{d}_M$$\end{document} and d0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{d}_0$$\end{document} are constant vectors.

We applied Gibbs sampling algorithm to estimate model parameters via their posterior distributions.

  • θjcy1:n,α1:nDirichlet(njc+dMj) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\theta }_{jc}\mid \varvec{y}_{1:n},\varvec{\alpha }_{1:n}\sim \text {Dirichlet}(\varvec{n}_{jc}+\varvec{d}_{M_j})$$\end{document}

    (38) p(θjcy1:n,α1:n)p(yIjαI,θjc)p(θjc)m=0Mjθjcmnjcm·m=0Mjθjcm1-1, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{\theta }_{jc}\mid \varvec{y}_{1:n},\varvec{\alpha }_{1:n})&\propto p(\varvec{y}_{Ij}\mid \varvec{\alpha }_{I},\varvec{\theta }_{jc})p(\varvec{\theta }_{jc})\nonumber \\&\propto \prod _{m=0}^{M_j}\theta _{jcm}^{n_{jcm}}\cdot \prod _{m=0}^{M_j}\theta _{jcm}^{1-1}, \end{aligned}$$\end{document}
    where njc=(njc0,,njc,Mj-1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{n}_{jc} = (n_{jc0},\ldots ,n_{jc,M_j-1})^\top $$\end{document} and I=i:αiv=c \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I = \left\{ i:\varvec{\alpha }_{i}^\top \varvec{v}=c \right\} $$\end{document} .
  • π|αDirichlet(n+d0) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }|\varvec{\alpha }\sim Dirichlet(\varvec{n}+\varvec{d}_0)$$\end{document}

    (39) p(πα1:n)p(α1:nπ)p(π)Dirichlet(n+d0), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{\pi }\mid \varvec{\alpha }_{1:n})\propto p(\varvec{\alpha }_{1:n}\mid \varvec{\pi })p(\varvec{\pi }) \sim \text {Dirichlet}(\varvec{n}+\varvec{d}_0), \end{aligned}$$\end{document}
    where πDirichlet(d0) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }\sim \text {Dirichlet}(\varvec{d}_0) $$\end{document} and n=(n0,,n2K-1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{n}=(n_0,\cdots ,n_{2^K-1})^\top $$\end{document} represents the frequencies of each attribute pattern αiv=c \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_{i}^\top \varvec{v}=c$$\end{document} , c=0,,2K-1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=0,\ldots ,2^K-1$$\end{document} .
  • αiα(i),y1:n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_i\mid \varvec{\alpha }_{(i)},\varvec{y}_{1:n}$$\end{document} We update α \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document} while integrating π \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }$$\end{document} out

    (40) p(α1,,αN)=p(α1,,αNπ)p(π)dπ=1B(d0)c=02K-1πcnc+d0,c-1dπ=B(n+d0)B(d0). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{\alpha }_1,\ldots ,\varvec{\alpha }_N)&= \int p(\varvec{\alpha }_1,\ldots ,\varvec{\alpha }_N\mid \varvec{\pi })p(\varvec{\pi })d\varvec{\pi }\nonumber \\&=\dfrac{1}{B(\varvec{d}_0)} \int \left( \prod _{c=0}^{2^K-1} \pi _{c}^{n_{c}+d_{0,c}-1}\right) \textrm{d} \varvec{\pi }\nonumber \\&=\dfrac{B(\varvec{n} + \varvec{d}_0)}{B(\varvec{d}_0)}. \end{aligned}$$\end{document}
    Then, the full conditional distribution for αi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_i$$\end{document} is
    (41) p(αiv=cα(i))=p(α1,,αN)p(α1,,αi-1,αi+1,,αN)=nc(i)+1n-1+2K, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{\alpha }_i^{\top } \varvec{v}=c\mid \varvec{\alpha }_{(i)})&= \dfrac{p(\varvec{\alpha }_1,\ldots ,\varvec{\alpha }_N)}{p(\varvec{\alpha }_1,\ldots ,\varvec{\alpha }_{i-1},\varvec{\alpha }_{i+1},\ldots ,\varvec{\alpha }_N)}\nonumber \\&= \frac{n_{c(i)}+1}{n-1+2^K}, \end{aligned}$$\end{document}
    where nc(i) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_{c(i)}$$\end{document} represents the number of individuals other than i that have attribute profile αc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_c$$\end{document} . The full conditional distribution of αi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_i$$\end{document} given y1:n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y}_{1:n}$$\end{document} and α(i) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_{(i)}$$\end{document} is
    (42) p(αiv=cα(i),y1:n)p(αiv=cα(i))p(yiαiv=c,Θ)(nc(i)+1)p(yiαiv=c,Θ), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{\alpha }_i^{\top } \varvec{v}=c\mid \varvec{\alpha }_{(i)},\varvec{y}_{1:n})&\propto p(\varvec{\alpha }_i^{\top } \varvec{v}=c\mid \varvec{\alpha }_{(i)})p(\varvec{y}_i\mid \varvec{\alpha }_i^{\top } \varvec{v}=c,\varvec{\Theta })\nonumber \\&\propto (n_{c(i)}+1)p(\varvec{y}_i\mid \varvec{\alpha }_i^{\top } \varvec{v}=c,\varvec{\Theta }), \end{aligned}$$\end{document}
    we update αi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_i$$\end{document} sequentially with weight proportional to (nc(i)+1)p(yiαiv=c,Θ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n_{c(i)}+1)p(\varvec{y}_i\mid \varvec{\alpha }_i^{\top } \varvec{v}=c,\varvec{\Theta })$$\end{document} .

The full Gibbs sampling steps of all parameters are shown in Algorithm 2.

In order to compare the model performance of the ULCM with the RLCM, we generate response data from the RLCM model, and then use both Algorithm 1 and to estimate model parameters in two models. We use same simulation settings as in our RLCM. For hyper-parameters in ULCM, we use dMj=1Mj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{d}_{M_j}=\varvec{1}_{M_j}$$\end{document} for j=1,,J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,\ldots ,J$$\end{document} . Simulation results are shown in Table 1 and provide evidence the RLCM has better parameter recovery. Table 2 reports additional details regarding MADs for Θ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }$$\end{document} at the item level for the RLCM and ULCM. The results show that the aggregate findings in Table 1 are consistent with item-level performance such that the RLCM has smaller MADs than the ULCM.

Results shown in Tables 1 and 2 indicate that for response data generated via RLCM, Algorithm 1 performs uniformly better than Algorithm 2, which implies that if there is structure in the latent relationship between attributes and observed variables, our RLCM can achieve better recovery for model parameters compared with the ULCM.

Table 1 Summary of simulation performance for RLCM and ULCM.

MAD = mean absolute deviation; EAR = element-wise accuracy rate; Accuracy = proportion of attribute profiles that are correctly estimated

Table 2 Summary of mean absolute deviations (MADs) of RLCM and ULCM item response probabilities by item for two selected conditions.

6. Applications

6.1. Wagner Preference Inventory

In this section, we apply Algorithm 1 to the dataset in the Wagner Preference Inventory (WAPI II) (Wagner & Wells, Reference Wagner and Wells1985). This data set contains nominal responses to J=12 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J=12$$\end{document} items, each of which contains M=4 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=4$$\end{document} choices. All 13, 502 participants completed the 12 questions, so we have N=13,502 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=13,502$$\end{document} . Table 3 presents the twelve items along with the marginal probability of selecting each response option. The twelve items were originally designed to distinguish preferences along the notion of activities that vary in Left vs. Right brain and logical vs. creative. The proposed two-by-two design included (a) Left, logical; (b) left, verbal; (c) right, manipulative/spatial; and (d) right, creative. A separate measure for left and right preference can be obtained by adding (a) and (b) and (c) and (d), respectively. In order to be consistent with (Wagner & Wells, Reference Wagner and Wells1985), we let K=2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=2$$\end{document} to represent the left-right brain dominance dichotomy. We ran five Markov chains with K=2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=2$$\end{document} for convergence diagnostics of the Markov chain.

Table 3 Wagner preference inventory items, anchors, and response frequencies.

a = left/logical; b = left/verbal; c = right/manipulative-spatial; d = right/creative

Figure 1 shows the plot of maximum proportional scale reduction factor (PSRF) (Brooks & Gelman, Reference Brooks and Gelman1998) for checking the convergence of Markov chain with multivariate parameters. The approximate convergence is achieved after 5, 000 iterations since the maximum PSRF remains below 1.1 after that. So we ran 100 Markov chains of length 20, 000 (with 10, 000 as burn-in) estimate the parameters and the results are shown in Table 4.

Figure 1 The maximum PSRF for Wagner Preference Inventory data.

Table 4 Estimated Θ^ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\varvec{\Theta }}$$\end{document} for Wagner Preference Inventory data.

Note: The estimated probabilities in Θ^ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\varvec{\Theta }}$$\end{document} are averaged over 100 repetitions.

Table 4 implies that participants with attribute profiles αi=(0,1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_i = (0,1)^\top $$\end{document} , (1,1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,1)^\top $$\end{document} , (0,0) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,0)^\top $$\end{document} and (1,0) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,0)^\top $$\end{document} prefer option a, b, c and d, respectively. For instance, the choices for item 1 were “a. major in logic”, “b. write a letter”, “c. fix things at home”, and “d. major in art”. The estimates for Θ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Theta }$$\end{document} in Table 4 indicate that members of class 01 were most likely to choose option “a” with an estimated response probability of 0.725. In contrast, members of class 00 had a 0.643 chance of selecting option “c” and respondents in the 10 class chose “d” with a probability equal to 0.693.

We also estimated the latent class probabilities of attribute profiles. Specifically, the proportions of each attribute profile pattern in an increasing order of the bijection αcv \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_c^\top \varvec{v}$$\end{document} are shown in Table 5. The latent classes are nearly equal in size with the most respondents of 0.290 classified with the 11 profile (i.e., Wagner’s left-verbal group) and the 00 class having 0.204 proportion of respondents (i.e., Wagner’s right-manipulative/spatial).

Table 5 Estimated distribution of attributes in Wagner Preference Inventory data.

Also, results shown in Table 4 can be used to evaluate the intended choice design for the items. Most items differentiated among one or two of the underlying latent classes. However, some options did not differentiate the latent classes as intended, such as item 2, 7 and 10. For item 2, Wagner originally specified option a as left-logical function and option d as right/creative function. However, according to probabilities represented in Table 4, people with attribute profile αi=(0,1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_i = (0,1)^\top $$\end{document} did not strongly prefer option a, and people with attribute profile αi=(1,0) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_i = (1,0)^\top $$\end{document} did not strongly prefer option d. The choice design for item 2 should be reconsidered.

7. Discussion

This paper focuses on the identifiability conditions of RLCMs. We proposed strict and generic identifiability conditions based on the unique condition of tensor decomposition shown in Kruskal theorem for the uniqueness of three-way arrays (Kruskal, Reference Kruskal1976, Reference Kruskal1977). The established identifiability conditions are applicable to a wealth of models for binary (e.g., Chen et al., Reference Chen, Liu, Xu and Ying2015; Reference Chen, Culpepper and Liang2020, de la Torre, Reference de la Torre2011), polytomous (e.g., Chen & de la Torre, Reference Chen and de la Torre2013, Culpepper, Reference Culpepper2019, Culpepper & Balamuta, Reference Culpepper and Balamuta2021), and nominal response data. Accordingly, the new identifiability results can guide researchers on the design of diagnostic interventions. Then, we developed a Bayesian formulation for the RLCMs where the generic identifiability conditions are taken into consideration. For our simulation study, we apply the Polya-gamma data augmentation for updating coefficients, and compared our algorithm results with ULCMs. Simulation results show that our algorithm can efficiently estimate model parameters, especially when the number of attribute profiles are small. Given latent structures, our model has better performance compared with ULRMs.

In this paper, we assume that the number of attribute profiles, K, is fixed and pre-specified. However, the prior knowledge for K may not be available in practice. Further study may consider K as an unknown parameter that needs to be estimated (e.g., see Chen et al., Reference Chen, Liu, Culpepper and Chen2021). Unknown K implies that the dimension of attribute profiles, category response probability array and coefficients array become unavailable, which can be quite challenging for future research.

Acknowledgements

The authors gratefully acknowledge the financial support of the National Science Foundation Grants 1758631 and SES 21-50628.

Appendix A Proof of Theorems

Preliminary Results

We start the proof with introducing some notation.

Definition 4

For a matrix M \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{M}$$\end{document} , the Kruskal rank of M \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{M}$$\end{document} is the largest number I such that every set of I columns in M \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{M}$$\end{document} are linearly independent.

Remark 7

Compared with the rank of a matrix M, we have rankK(M)rank(M) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank_K(M)\le rank(M)$$\end{document} . If M has full column rank, then the equality holds.

Consider a tripartition of the set J={1,2,,J} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {J}}=\{1,2,\ldots ,J\}$$\end{document} into three disjoint, non-empty subsets J1={1,2,,K} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {J}}_1=\{1,2,\ldots ,K\}$$\end{document} , J2={K+1,,2K} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {J}}_2=\{K+1,\ldots ,2K\}$$\end{document} and J3={2K+1,,J} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {J}}_3=\{2K+1,\ldots ,J\}$$\end{document} . Then, the marginal distribution of response Y \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Y}$$\end{document} can be represented as a three-way array T \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}$$\end{document} decomposing Y \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Y}$$\end{document} into three parts:

(A1) T(yJ1,yJ2,yJ3)=P(YJ1=yJ1,YJ2=yJ2,YJ3=yJ3π,B)=απαP(YJ1=yJ1,YJ2=yJ2,YJ3=yJ3B,α)=απαP(YJ1=yJ1B,α)P(YJ2=yJ2B,α)P(YJ3=yJ3B,α). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \begin{aligned} \varvec{T}_{(\varvec{y}^{{\mathbb {J}}_1}, \varvec{y}^{{\mathbb {J}}_2},\varvec{y}^{{\mathbb {J}}_3})}&= P(\varvec{Y}^{{\mathbb {J}}_1}=\varvec{y}^{{\mathbb {J}}_1}, \varvec{Y}^{{\mathbb {J}}_2}=\varvec{y}^{{\mathbb {J}}_2},\varvec{Y}^{{\mathbb {J}}_3}=\varvec{y}^{{\mathbb {J}}_3}\mid \varvec{\pi }, \varvec{B})\\&=\sum _{\varvec{\alpha }} \pi _{\varvec{\alpha }} P(\varvec{Y}^{{\mathbb {J}}_1}=\varvec{y}^{{\mathbb {J}}_1}, \varvec{Y}^{{\mathbb {J}}_2}=\varvec{y}^{{\mathbb {J}}_2},\varvec{Y}^{{\mathbb {J}}_3}=\varvec{y}^{{\mathbb {J}}_3}\mid \varvec{B},\varvec{\alpha })\\&=\sum _{\varvec{\alpha }} \pi _{\varvec{\alpha }} P(\varvec{Y}^{{\mathbb {J}}_1}=\varvec{y}^{{\mathbb {J}}_1}\mid \varvec{B},\varvec{\alpha }) P(\varvec{Y}^{{\mathbb {J}}_2}=\varvec{y}^{{\mathbb {J}}_2}\mid \varvec{B},\varvec{\alpha }) P(\varvec{Y}^{{\mathbb {J}}_3}=\varvec{y}^{{\mathbb {J}}_3}\mid \varvec{B},\varvec{\alpha }). \end{aligned} \end{aligned}$$\end{document}

Let T1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_1$$\end{document} , T2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_2$$\end{document} , T3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_3$$\end{document} represent distributions of YJ1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Y}^{{\mathbb {J}}_1}$$\end{document} , YJ2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Y}^{{\mathbb {J}}_2}$$\end{document} , YJ3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Y}^{{\mathbb {J}}_3}$$\end{document} given values of attribute profile α \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document} . Then, the identifiability is equivalent to the uniqueness of the decomposition of the following tensor (Kruskal, Reference Kruskal1977)

(A2) T=απαT1,αT2,αT3,α=αT~1,αT2,αT3,α, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{T} =\sum _{\varvec{\alpha }} \pi _{\varvec{\alpha }} \varvec{T}_{1,\varvec{\alpha }} \otimes \varvec{T}_{2,\varvec{\alpha }} \otimes \varvec{T}_{3,\varvec{\alpha }} =\sum _{\varvec{\alpha }} \tilde{\varvec{T}}_{1, \varvec{\alpha }} \otimes \varvec{T}_{2,\varvec{\alpha }} \otimes \varvec{T}_{3,\varvec{\alpha }}, \end{aligned}$$\end{document}

where T1,α \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_{1, \varvec{\alpha }}$$\end{document} , T2,α \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_{2, \varvec{\alpha }}$$\end{document} , T3,α \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_{3, \varvec{\alpha }}$$\end{document} are the α \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document} -th column of T1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_1$$\end{document} , T2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_2$$\end{document} , T3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_3$$\end{document} , and T~1,α=παT1,α \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\varvec{T}}_{1, \varvec{\alpha }}= \pi _{\varvec{\alpha }} \varvec{T}_{1, \varvec{\alpha }}$$\end{document} .

We apply the following theorem shown in Kruskal (Reference Kruskal1977) for our proof.

Theorem 3

(Kruskal, Reference Kruskal1977) If

(A3) rankK(T1~)+rankK(T2)+rankK(T3)2·2K+2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} rank_K(\tilde{\varvec{T}_1})+rank_K(\varvec{T}_2)+rank_K(\varvec{T}_3)\ge 2 \cdot 2^K +2, \end{aligned}$$\end{document}

then the tensor decomposition of T \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}$$\end{document} is unique up to simultaneous permutation and rescaling of the columns.

We have rankK(T1~)=rankK(T1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank_K(\tilde{\varvec{T}_1})=rank_K(\varvec{T}_1)$$\end{document} since π \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }$$\end{document} has positive entries. Moreover, T1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_1$$\end{document} , T2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_2$$\end{document} and T3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_3$$\end{document} are all stochastic matrices with column sum 1, so the decomposition of the tensor T \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}$$\end{document} is unique up to permutations of columns if (A3) in Theorem 3 is satisfied, which implies model identifiability.

If items have M response levels, we will be able to construct T1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_1$$\end{document} , T2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_2$$\end{document} and T3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_3$$\end{document} such that T1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_1$$\end{document} , T2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_2$$\end{document} are MK×2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^K\times 2^K$$\end{document} , and T3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_3$$\end{document} is MJ-2K×2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^{J-2K}\times 2^K$$\end{document} . So for the first set of K items, the probability matrix T1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_1$$\end{document} is

T1=j=1Kθj0,,j=1Kθj,2K-1. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{T}_1=\left[ \bigotimes _{j=1}^K \varvec{\theta }_{j0},\ldots ,\bigotimes _{j=1}^K \varvec{\theta }_{j,2^{K}-1} \right] . \end{aligned}$$\end{document}

We multiply T1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_1$$\end{document} by a collapsing matrix A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}$$\end{document} that makes A2K×MKT1MK×2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\underset{2^K\times M^K}{\varvec{A}}\underset{M^K\times 2^K}{\varvec{T}_1}$$\end{document} a square matrix of size 2K×2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^K \times 2^K$$\end{document} .

Definition 5

Matrix Aj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}_j$$\end{document} , with size 2×M \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times M$$\end{document} , is a collapsing matrix for item j. For the response probability vector θjc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{jc}$$\end{document} , Ajθjc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}_j\theta _{jc}$$\end{document} only gives probabilities of selecting a given response level or not in class c.

Following is an example of matrix Aj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}_j$$\end{document} .

Example 5

Consider Mj=3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_j= 3$$\end{document} and we are collapsing on option 1. Let

Aj=101010, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{A}_j = \begin{bmatrix} 1&{}0&{}1\\ 0&{}1&{}0\\ \end{bmatrix}, \end{aligned}$$\end{document}

and the response probability vector θjc=(θjc,0,θjc,1,θjc,2) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{jc}=(\theta _{jc,0},\theta _{jc,1},\theta _{jc,2})$$\end{document} for item j in class c. Then, we have

Ajθjc=1010101-θjc,1-θjc,2θjc,1θjc,2=1-θjc,1θjc,1. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{A}_j\theta _{jc}= \begin{bmatrix} 1&{}0&{}1\\ 0&{}1&{}0\\ \end{bmatrix} \begin{bmatrix} 1-\theta _{jc,1}-\theta _{jc,2}\\ \theta _{jc,1}\\ \theta _{jc,2}\\ \end{bmatrix} = \begin{bmatrix} 1-\theta _{jc,1}\\ \theta _{jc,1}\\ \end{bmatrix}. \end{aligned}$$\end{document}

Let A=j=1KAj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}=\bigotimes _{j=1}^K \varvec{A}_j$$\end{document} , where Aj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}_j$$\end{document} is defined in Definition 5. Compared with T1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_1$$\end{document} , AT1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A} \varvec{T}_1$$\end{document} is a collapsed version of T1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_1$$\end{document} which only contains probabilities of selecting a given response level or not by latent class membership. So we can write AT1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A} \varvec{T}_1$$\end{document} as

(A4) AT1=j=1KAjj=1Kθj0,,j=1Kθj,2K-1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{A} \varvec{T}_1&=\bigotimes _{j=1}^K\varvec{A}_j \left[ \bigotimes _{j=1}^K \varvec{\theta }_{j0},\ldots ,\bigotimes _{j=1}^K \varvec{\theta }_{j,2^K-1}\right] \end{aligned}$$\end{document}
(A5) =j=1KAjj=1Kθj0,,j=1KAjj=1Kθj,2K-1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&=\left[ \bigotimes _{j=1}^K\varvec{A}_j \bigotimes _{j=1}^K \varvec{\theta }_{j0},\ldots ,\bigotimes _{j=1}^K\varvec{A}_j \bigotimes _{j=1}^K \varvec{\theta }_{j,2^K-1}\right] \end{aligned}$$\end{document}
(A6) =j=1K(Ajθj0),,j=1K(Ajθj,2K-1). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&=\left[ \bigotimes _{j=1}^K (\varvec{A}_j\varvec{\theta }_{j0}),\ldots ,\bigotimes _{j=1}^K (\varvec{A}_j\varvec{\theta }_{j,2^{K}-1}) \right] . \end{aligned}$$\end{document}

Proposition 1

If Δ1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }^1$$\end{document} follows a simple structure shown in Definition 1 and Remark 2, then we have

(A7) AT1=j=1K(pj0,pj1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{A}\varvec{T}_1 = \bigotimes _{j=1}^K(\varvec{p}_{j0},\varvec{p}_{j1}) \end{aligned}$$\end{document}

where pj0=Ajθj0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}_{j0}=\varvec{A}_{j}\varvec{\theta }_{j0}$$\end{document} and pj1=Ajθj,ejv \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}_{j1}=\varvec{A}_{j} \varvec{\theta }_{j,\varvec{e}_j^\top \varvec{v}}$$\end{document} .

Proof

Simple structure implies that we can then write AT1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}\varvec{T}_1$$\end{document} as a block matrix:

(A8) AT1=p10j>1Ajθj0,,p10j>1Ajθj,2K-1-1,p11j>1Ajθj,2K-1,,p11j>1Ajθj,2K-1=p10T(1)0,p11T(1)1. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{A}\varvec{T}_1&=\left( \varvec{p}_{10}\otimes \left( \bigotimes _{j>1}\varvec{A}_{j}\varvec{\theta }_{j0}\right) ,\dots ,\varvec{p}_{10}\otimes \left( \bigotimes _{j>1}\varvec{A}_{j}\varvec{\theta }_{j,2^{K-1}-1}\right) ,\right. \nonumber \\&\left. \varvec{p}_{11}\otimes \left( \bigotimes _{j>1}\varvec{A}_{j}\varvec{\theta }_{j,2^{K-1}}\right) ,\dots ,\varvec{p}_{11}\otimes \left( \bigotimes _{j>1}\varvec{A}_{j}\varvec{\theta }_{j,2^K-1}\right) \right) \nonumber \\&=\left( \varvec{p}_{10}\otimes \varvec{T}_{(1)0},\varvec{p}_{11} \otimes \varvec{T}_{(1)1}\right) . \end{aligned}$$\end{document}

We next show that simple structure of item 1 implies that,

j>1AjΘj0=j>1AjΘj,2K-1,,j>1AjΘj,2K-1-1=j>1AjΘj,2K-1. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \bigotimes _{j>1}\varvec{A}_j\varvec{\Theta }_{j0}=\bigotimes _{j>1}\varvec{A}_j\varvec{\Theta }_{j,2^{K-1}}, \dots , \bigotimes _{j>1}\varvec{A}_j\varvec{\Theta }_{j,2^{K-1}-1}=\bigotimes _{j>1}\varvec{A}_j\varvec{\Theta }_{j,2^{K}-1}. \end{aligned}$$\end{document}

Notice that items j>1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j>1$$\end{document} are unrelated to attribute one. Let α(1)=(α2,,αK) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_{(1)}=(\alpha _2,\dots ,\alpha _K)^\top $$\end{document} denote the response pattern on attributes two through K. Simple structure of item 1 implies that classes with α=(0,α(1)) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }=(0,\varvec{\alpha }_{(1)})^\top $$\end{document} and α=(1,α(1)) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }=(1,\varvec{\alpha }_{(1)})^\top $$\end{document} will have identical response probabilities on items j>1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j>1$$\end{document} . Stated differently, classes (0,α(1))v=c0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\varvec{\alpha }_{(1)})\varvec{v}=c_0$$\end{document} and (1,α(1))v=c0+2K-1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1,\varvec{\alpha }_{(1)})\varvec{v}=c_0+2^{K-1}$$\end{document} have equivalent response probabilities on the remaining j>1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j>1$$\end{document} items so that j>1AjΘj,c0=j>1AjΘj,c0+2K-1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigotimes _{j>1}\varvec{A}_j\varvec{\Theta }_{j,c_0}=\bigotimes _{j>1}\varvec{A}_j\varvec{\Theta }_{j,c_0+2^{K-1}}$$\end{document} for all c0{0,,2K-1-1} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_0\in \{0,\dots ,2^{K-1}-1\}$$\end{document} . Consequently, T(1)0=T(1)1=T(1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_{(1)0}=\varvec{T}_{(1)1}=\varvec{T}_{(1)}$$\end{document} and properties of the Kronecker product imply that

(A9) AT1=p10T(1),p11T(1)=p10,p11T(1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{A}\varvec{T}_1=\left( \varvec{p}_{10}\otimes \varvec{T}_{(1)},\varvec{p}_{11} \otimes \varvec{T}_{(1)}\right) = \left( \varvec{p}_{10},\varvec{p}_{11}\right) \otimes \varvec{T}_{(1)} \end{aligned}$$\end{document}

where

(A10) T(1)=j>1AjΘj0,,j>1AjΘj,2K-1-1. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{T}_{(1)} = \left( \bigotimes _{j>1}\varvec{A}_j\varvec{\Theta }_{j0},\dots ,\bigotimes _{j>1}\varvec{A}_j\varvec{\Theta }_{j,2^{K-1}-1} \right) . \end{aligned}$$\end{document}

Item two is also simple structure and repeating the aforementioned steps on T(1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_{(1)}$$\end{document} implies that

(A11) AT1=p10,p11p20,p21T(1:2) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{A}\varvec{T}_1=\left( \varvec{p}_{10},\varvec{p}_{11}\right) \otimes \left( \varvec{p}_{20},\varvec{p}_{21}\right) \otimes \varvec{T}_{(1:2)} \end{aligned}$$\end{document}

where

(A12) T(1:2)=j>2AjΘj0,,j>2AjΘj,2K-2-1. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{T}_{(1:2)} = \left( \bigotimes _{j>2}\varvec{A}_j\varvec{\Theta }_{j0},\dots ,\bigotimes _{j>2}\varvec{A}_j\varvec{\Theta }_{j,2^{K-2}-1} \right) . \end{aligned}$$\end{document}

Consequently, simple structure for the remaining j{3,,K} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\in \{3,\dots ,K\}$$\end{document} items implies that

(A13) AT1=j=1K(pj0,pj1). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{A}\varvec{T}_1 = \bigotimes _{j=1}^K(\varvec{p}_{j0},\varvec{p}_{j1}). \end{aligned}$$\end{document}

\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\square $$\end{document}

Remark 8

Note that properties of the Kronecker product and simple structure in T1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_1$$\end{document} imply that AT1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}\varvec{T}_1$$\end{document} has rank 2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^K$$\end{document} if pj0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}_{j0}$$\end{document} and pj1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}_{j1}$$\end{document} are linearly independent for all j. According to Definition 1, there is at least one βjjm0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{jjm}\ne 0$$\end{document} for m{1,,Mj-1} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\in \{1,\dots ,M_j-1\}$$\end{document} , which implies that pj0pj1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}_{j0}\ne \varvec{p}_{j1}$$\end{document} .

Proposition 2

rank(AiTi)=2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank(\varvec{A}^i\varvec{T}_i)=2^K$$\end{document} if and only if rank(Ti)=2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank(\varvec{T}_i)=2^K$$\end{document} , i=1,2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2$$\end{document} .

Proof

By Sylvester’s rank inequality (Matsaglia & Styan, Reference Matsaglia and Styan1974), we have

rank(Ai)+rank(Ti)-2Krank(AiTi)min{rank(Ai),rank(Ti)}. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} rank(\varvec{A}^i)+rank(\varvec{T}_i)-2^K \le rank(\varvec{A}^i\varvec{T}_i)\le \min \{rank(\varvec{A}^i),rank(\varvec{T}_i)\}. \end{aligned}$$\end{document}

Given rank(Aji)=2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank(\varvec{A}_j^i)=2$$\end{document} , and the property of the rank of a Kronecker product, we have rank(Ai)=j=1Krank(Aji)=2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank(\varvec{A}^i)=\prod _{j=1}^{K}rank(\varvec{A}_j^i)=2^K$$\end{document} . Then, we get

rank(Ti)rank(AiTi)min{2K,rank(Ti)}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} rank(\varvec{T}_i) \le rank(\varvec{A}^i\varvec{T}_i)\le \min \{2^K,rank(\varvec{T}_i)\}, \end{aligned}$$\end{document}

which implies that rank(AiTi)=2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank(\varvec{A}^i\varvec{T}_i)=2^K$$\end{document} if and only if rank(Ti)=2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank(\varvec{T}_i)=2^K$$\end{document} . \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\square $$\end{document}

Proof of Theorem 1

By Proposition 2, it suffices to show that rank(A1T1)=rank(A2T2)=2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank(\varvec{A}^1\varvec{T}_1)=rank(\varvec{A}^2\varvec{T}_2)=2^K$$\end{document} and rankK(T3)2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank_K(\varvec{T}_3)\ge 2$$\end{document} , where A1=j=1KAj1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}^1=\bigotimes _{j=1}^K \varvec{A}_j^1$$\end{document} and A2=j=1KAj2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}^2=\bigotimes _{j=1}^K \varvec{A}_j^2$$\end{document} are collapsing matrices introduced in Definition 5. According to condition (A1) in Theorem 1, both Δ1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }^1$$\end{document} and Δ2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }^2$$\end{document} satisfy the simple structure, then by Proposition 1 and remark 8 we have rank(A1T1)=rank(A2T2)=2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank(\varvec{A}^1\varvec{T}_1)=rank(\varvec{A}^2\varvec{T}_2)=2^K$$\end{document} . For T3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_3$$\end{document} , since each element is nonnegative and each column sums to 1, then given condition (A2), for any two different classes c and c \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c^\prime $$\end{document} , there must exist one item j such that θjcmθjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{jcm}\ne \theta _{j^\prime m}$$\end{document} , so that rankK(T3)2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank_K(\varvec{T}_3)\ge 2$$\end{document} . By Theorem 3, the model is strictly identified.

Proof of Theorem 2

According to the tripartition of items set J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {J}}$$\end{document} , we can decompose Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} into Δ1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }^1$$\end{document} , Δ2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }^2$$\end{document} , Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }^\prime $$\end{document} corresponding to J1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {J}}_1$$\end{document} , J2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {J}}_2$$\end{document} , J3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {J}}_3$$\end{document} , respectively. Similarly, we can decompose parameter space Ω(B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (\varvec{B})$$\end{document} into three parts, ΩΔ(B)=ΩΔ1×ΩΔ2×ΩΔ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }}(\varvec{B})=\Omega _{\varvec{\Delta }^1}\times \Omega _{\varvec{\Delta }^2}\times \Omega _{\varvec{\Delta }'}$$\end{document} . Therefore, to prove Theorem 2, it suffices to show that under conditions (B1) and (B2), rankK(T1)=rankK(T2)=2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank_K(\varvec{T}_1)=rank_K(\varvec{T}_2)=2^K$$\end{document} and rankK(T3)2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank_K(\varvec{T}_3)\ge 2$$\end{document} hold almost everywhere in ΩΔ1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }^1}$$\end{document} , ΩΔ2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }^2}$$\end{document} , ΩΔ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }^\prime }$$\end{document} , respectively. Then, by Theorem 3, the identifiability holds almost everywhere in ΩΔ(B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }}(\varvec{B})$$\end{document} .

Based on Theorem 3 and Proposition 2, we first show that rank(AiTi)=2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank(\varvec{A}^i \varvec{T}_i)=2^K$$\end{document} holds almost everywhere in ΩΔi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }^i}$$\end{document} , i=1,2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2$$\end{document} , given Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} satisfying the structure shown in Theorem 2. Let

(A14) fi(B)=det(AiTi):ΩΔiR \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f_{i}(\varvec{B})=det(\varvec{A}^i\varvec{T}_i):\ \Omega _{\varvec{\Delta }^i}\rightarrow {\mathbb {R}} \end{aligned}$$\end{document}

denote the determinant of matrix AiTi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}^i\varvec{T}_i$$\end{document} , where Δi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }^i$$\end{document} satisfies condition (B1).

Proposition 3

fi(B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{i}(\varvec{B})$$\end{document} is a real analytic function of B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}$$\end{document} .

Proof

fi(B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{i}(\varvec{B})$$\end{document} is a composition function shown as below.

fi(B)=det(AiTi)=g(θ1,0,,θK,2K-1), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f_{i}(\varvec{B})=det(\varvec{A}^i\varvec{T}_i)=g(\varvec{\theta }_{1,0},\ldots ,\varvec{\theta }_{K,2^K-1}), \end{aligned}$$\end{document}

where θjc=(θjc0,,θjc,Mj-1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\theta }_{jc}=(\theta _{jc0},\ldots ,\theta _{jc,M_j-1})^\top $$\end{document} and θjcm=expαcβjmm=0Mj-1expαcβjm=11+mmexpαcβjm-αcβjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{jcm}=\frac{\exp \left( \varvec{\alpha }_c^\top \varvec{\beta }_{jm} \right) }{\sum _{m'=0}^{M_j-1}\exp \left( \varvec{\alpha }_c^\top \varvec{\beta }_{jm'} \right) }=\dfrac{1}{1+\sum _{m'\ne m}\exp \left( \varvec{\alpha }_c^\top \varvec{\beta }_{jm'}-\varvec{\alpha }_c^\top \varvec{\beta }_{jm} \right) }$$\end{document} .

θjcm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{jcm}$$\end{document} is an analytic function because exponential functions are positive analytic functions, and g(θ1,0,,θK,2K-1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(\varvec{\theta }_{1,0},\ldots ,\varvec{\theta }_{K,2^K-1})$$\end{document} is also a real analytic function of (θ1,0,,θK,2K-1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\varvec{\theta }_{1,0},\ldots ,\varvec{\theta }_{K,2^K-1})$$\end{document} given that it is a polynomial. Therefore, we know that fi(B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{i}(\varvec{B})$$\end{document} is a real analytic function of B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}$$\end{document} , given the fact that the composition of real analytic functions is a real analytic function. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\square $$\end{document}

Next we introduce the following lemma, which shows that the zero set of a real analytic function has Lebesgue measure zero if the function is not constantly equal to zero.

Lemma 1

(Mityagin, Reference Mityagin2020; Dang, Reference Dang2015) Let f:RdR \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f: {\mathbb {R}}^d\rightarrow {\mathbb {R}}$$\end{document} be a real analytic function on Rd \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document} . If f is not identically zero, then its zero set {xRd:f(x)=0} \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\varvec{x}\in {\mathbb {R}}^d: f(\varvec{x})=0\}$$\end{document} has Lebesgue measure zero.

Proposition 4

If Δi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }^i$$\end{document} satisfies the structure shown in Theorem 2, then there exists some BΩΔi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}\in \Omega _{\varvec{\Delta }^i}$$\end{document} , such that fi(B)0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_i(\varvec{B})\ne 0$$\end{document} , i=1,2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2$$\end{document} .

Proof

As shown in condition B1 of Theorem 2, assume that for j=1,,K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,\ldots ,K$$\end{document} , Δj1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _j^1$$\end{document} and Δj2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{j}^2$$\end{document} satisfy the following structure:

(A15) Δj=000000100δjj1=100100000100000Mj×P. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\Delta }_j= \begin{bmatrix} 0&{}0&{}\cdots &{}0&{}0&{}0&{}\cdots &{}0\\ 1&{}0&{}\cdots &{}0&{}\delta _{jj1}=1&{}0&{}\cdots &{}0\\ 1&{}0&{}\cdots &{}0&{}0&{}0&{}\cdots &{}0\\ \vdots &{}\vdots &{}&{}\vdots &{}\vdots &{}\vdots &{}&{}\vdots \\ 1&{}0&{}\cdots &{}0&{}0&{}0&{}\cdots &{}0\\ \end{bmatrix}_{M_j \times P}. \end{aligned}$$\end{document}

Then, we have

pj0=1-expβj01expβj01+hj,expβj01expβj01+hj,pj1=1-expβj01+βjj1expβj01+βjj1+hj,expβj01+βjj1expβj01+βjj1+hj, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{p}_{j0}=\left( 1-\frac{\exp \left( \beta _{j01} \right) }{\exp \left( \beta _{j01} \right) + h_j},\frac{\exp \left( \beta _{j01} \right) }{\exp \left( \beta _{j01} \right) + h_j}\right) ^\top ,\\ \varvec{p}_{j1}=\left( 1-\frac{\exp \left( \beta _{j01}+\beta _{jj1} \right) }{\exp \left( \beta _{j01}+\beta _{jj1} \right) + h_j},\frac{\exp \left( \beta _{j01}+\beta _{jj1} \right) }{\exp \left( \beta _{j01}+\beta _{jj1} \right) + h_j}\right) ^\top , \end{aligned}$$\end{document}

where

hj=m1expβj0m. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} h_j=\sum _{m'\ne 1}\exp \left( \beta _{j0m^\prime } \right) . \end{aligned}$$\end{document}

As shown in Definition 1, Δj1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _j^1$$\end{document} and Δj2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{j}^2$$\end{document} satisfy simple structure, and pj0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}_{j0}$$\end{document} and pj1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}_{j1}$$\end{document} are linearly independent for j=1,,K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,\ldots ,K$$\end{document} due to βjk10 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{jk1}\ne 0$$\end{document} . Therefore, according to Proposition 1 and Remark 8, we have rank(AiTi)=j=1Krank(pj0,pj1)=2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank(\varvec{A}^i\varvec{T}_i)=\prod _{j=1}^{K}rank(\varvec{p}_{j0},\varvec{p}_{j1})=2^K$$\end{document} , which implies that fi(B)0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_i(\varvec{B})\ne 0$$\end{document} , i=1,2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,2$$\end{document} . \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\square $$\end{document}

Let Si \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_i$$\end{document} denote the zero set of function fi(B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_i(\varvec{B})$$\end{document} :

Si={BΩΔi:fi(B)=det(AiTi)=0}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} S_{i}=\{\varvec{B}\in \Omega _{\varvec{\Delta }^i}: f_{i}(\varvec{B})=det(\varvec{A}^i\varvec{T}_i)=0\}, \end{aligned}$$\end{document}

then by Lemma 1 we can conclude that Si \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{i}$$\end{document} is a measure zero set with respect to ΩΔi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }^i}$$\end{document} provided Δi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }^i$$\end{document} satisfies condition (B1).

For condition (B2), we need to show that rankK(T3)2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank_K(\varvec{T}_3)\ge 2$$\end{document} holds almost everywhere in ΩΔ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Omega }_{\varvec{\Delta }^\prime }$$\end{document} . Note rankK(T3)2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank_K(\varvec{T}_3)\ge 2$$\end{document} implies that for any two different attribute profiles αc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_c$$\end{document} , αc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_{c^\prime }$$\end{document} , there always exist one j>2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j^*>2K$$\end{document} , such that θjcmθjcm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{j^*cm}\ne \theta _{j^*c^\prime m}$$\end{document} for some choice m with 0<m<Mj \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<m<M_{j^*}$$\end{document} . Note that the αc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_c$$\end{document} -th and αc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_{c^\prime }$$\end{document} -th columns of T3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_3$$\end{document} are T3,αc=j>2Kθjαc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_{3,\varvec{\alpha }_c}=\bigotimes _{j>2K}\varvec{\theta }_{j\varvec{\alpha }_c}$$\end{document} and T3,αc=j>2Kθjαc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_{3,\varvec{\alpha }_{c^\prime }}=\bigotimes _{j>2K}\varvec{\theta }_{j\varvec{\alpha }_{c^\prime }}$$\end{document} . Then, under condition B2, we have θjαcθjαc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\theta }_{j^*\varvec{\alpha }_c}\ne \varvec{\theta }_{j^*\varvec{\alpha }_{c^\prime }}$$\end{document} , which implies T3,αcT3,αc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_{3,\varvec{\alpha }_c} \ne \varvec{T}_{3,\varvec{\alpha }_{c^\prime }}$$\end{document} . Therefore, T3,αc=T3,αc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{T}_{3,\varvec{\alpha }_c} = \varvec{T}_{3,\varvec{\alpha }_{c^\prime }}$$\end{document} holds only when βjmk=0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{j^*mk}=0$$\end{document} for some k and choice m with δjmk=1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{j^*mk}=1$$\end{document} , which are of Lebesgue measure zero within ΩΔ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Omega }_{\varvec{\Delta }^\prime }$$\end{document} . That proves rankK(T3)2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$rank_K(\varvec{T}_3)\ge 2$$\end{document} almost everywhere within ΩΔ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Omega }_{\varvec{\Delta }^\prime }$$\end{document} .

Therefore, the inequality A3 shown in Theorem 3 holds almost everywhere in ΩΔ(B) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _{\varvec{\Delta }}(\varvec{B})$$\end{document} .

Appendix B Posterior Inference

The goal of this section is to describe our strategy for inferring the nominal RLCM parameters. We first discuss the conditional likelihood and apply the Polya-gamma identity to augment the likelihood function. An important feature to note is that we collapse the conditional likelihood, which has the advantage of requiring fewer draws of Polya-gamma augmented variables. Then, we show the derivation of full conditional distributions for a Gibbs sampling algorithm.

Conditional Likelihood and Polya Gamma Data Augmentation

Let i=1,,n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i=1,\dots ,n$$\end{document} index individuals so that yij \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_{ij}$$\end{document} denotes the observed response for individual i to item j and yi=(yi1,,yiJ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y}_i=(y_{i1},\dots ,y_{iJ})^\top $$\end{document} is a J-vector of responses for individual i. Let B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}$$\end{document} denote all of the item parameters. The conditional distribution of a sample of n responses is,

(B1) p(y1:n|α1:n,B)=i=1np(yi|αi,B)=i=1nj=1Jm=0Mj-1expaiβjmm=0Mj-1expaiβjm1(yij=m). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{y}_{1:n}|\varvec{\alpha }_{1:n},\varvec{B}) = \prod _{i=1}^n p(\varvec{y}_{i}|\varvec{\alpha }_i,\varvec{B})=\prod _{i=1}^n\prod _{j=1}^J \prod _{m=0}^{M_j-1}\left( \frac{\exp \left( \varvec{a}_i^\top \varvec{\beta }_{jm} \right) }{\sum _{m'=0}^{M_j-1}\exp \left( \varvec{a}_i^\top \varvec{\beta }_{jm'} \right) }\right) ^{\mathbb {1}(y_{ij}=m)}. \end{aligned}$$\end{document}

where yi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y}_i$$\end{document} is the response vector for individual i, αi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_i$$\end{document} is individual i’s attribute profile, y1:n=(y1,,yn) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y}_{1:n}=(\varvec{y}_{1},\dots ,\varvec{y}_{n})^\top $$\end{document} is a n×J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times J$$\end{document} matrix of responses, and α1:n=(α1,,αn) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_{1:n}=(\varvec{\alpha }_1,\dots ,\varvec{\alpha }_n)^\top $$\end{document} denotes all attribute profiles. An important feature to note about the conditional likelihood is that we can aggregate terms in the product for individuals who reside in the same class and select the same response options on items. That is, after switching the order of the i and j products and substituting ai=aαiv \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{a}_i = \varvec{a}_{\varvec{\alpha }_i^\top \varvec{v}}$$\end{document} we can aggregate Eq. B1 as

(B2) p(y1:n|α1:n,B)=j=1Jc=02K-1m=0Mj-1expacβjmnjcmm=0Mj-1expacβjmnc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{y}_{1:n}|\varvec{\alpha }_{1:n},\varvec{B}) = \prod _{j=1}^J \prod _{c=0}^{2^K-1} \frac{\prod _{m=0}^{M_j-1} \left[ \exp \left( \varvec{a}_c^\top \varvec{\beta }_{jm} \right) \right] ^{n_{jcm}}}{\left[ \sum _{m'=0}^{M_j-1}\exp \left( \varvec{a}_c^\top \varvec{\beta }_{jm'} \right) \right] ^{n_c}} \end{aligned}$$\end{document}

where njcm=i=1n1(yij=m)1(αiv=c) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_{jcm} = \sum _{i=1}^n \mathbb {1}(y_{ij}=m) \mathbb {1}(\varvec{\alpha }_i^\top \varvec{v}=c)$$\end{document} indicates the number of individuals within class c that select option m on item j and nc=i=1n1(αiv=c) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_c= \sum _{i=1}^n \mathbb {1}(\varvec{\alpha }_i^\top \varvec{v}=c)$$\end{document} is the number of individuals residing in class c.

The form of Eq. B2 enables us to adopt the Polya-Gamma data augmentation strategy for models involving logistic functions (Polson et al., Reference Polson, Scott and Windle2013). In particular, Polson et al. (Reference Polson, Scott and Windle2013) reported the following identity relating the logistic function with an integral for a Polya-Gamma (PG) random variable,

(B3) (eψ)a1+eψb=2-beκψ0e-wψ2/2p(w)dw,aR,b>0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{(e^{\psi })^a}{\left( 1+e^\psi \right) ^b} = 2^{-b}e^{\kappa \psi }\int _0^\infty e^{-w \psi ^2/2}p(w)dw,\; a\in {\mathbb {R}},\; b>0 \end{aligned}$$\end{document}

where κ=a-b/2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa =a-b/2$$\end{document} and wPG(b,0) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\sim \text {PG}(b,0)$$\end{document} . Equation B3 provides a data augmentation strategy for the random variable ψ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} that is conjugate with normal priors. For instance, see Polson et al. (Reference Polson, Scott and Windle2013) for a summary of a Gibbs sampling algorithm to infer the posterior distribution of logistic regression model parameters using Markov chain Monte Carlo (MCMC). Additionally, the PG strategy was also used for Bayesian estimation of the two parameter logistic item response theory model (Jiang & Templin, Reference Jiang and Templin2019) and binary diagnostic models (Balamuta & Culpepper, Reference Balamuta and Culpepper2022).

We apply the PG identity in Eq. B3 by rewriting the portion of the conditional likelihood in Eq. B2 that corresponds with item j in a logistic format. Specifically, as noted by Holmes and Held and Polson et al., the full conditional distribution for βjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_{jm}$$\end{document} can be written as,

(B4) p(βjm|y1:n,j,α1:n,Bj(m))=p(βjm)p(y1:n,j|Bj)p(βjm)c=02K-1expηjcm1+expηjcmnjcm11+expηijmnc-njcm. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{\beta }_{jm}|\varvec{y}_{1:n,j},\varvec{\alpha }_{1:n},\varvec{B}_{j(m)})&=p(\varvec{\beta }_{jm})p(\varvec{y}_{1:n,j}|\varvec{B}_j)\nonumber \\&\propto p(\varvec{\beta }_{jm}) \prod _{c=0}^{2^K-1} \left[ \frac{\exp \left( \eta _{jcm} \right) }{1+\exp \left( \eta _{jcm} \right) }\right] ^{n_{jcm}} \left[ \frac{1}{1+\exp \left( \eta _{ijm} \right) }\right] ^{n_c-n_{jcm}}. \end{aligned}$$\end{document}

where y1:n,j=(y1j,,ynj) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y}_{1:n,j}=(y_{1j},\dots ,y_{nj})$$\end{document} , Bj(m)=(βj0,,βj,m-1,βj,m+1,,βj,Mj-1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}_{j(m)}=(\varvec{\beta }_{j0},\dots ,\varvec{\beta }_{j,m-1},\varvec{\beta }_{j,m+1},\dots ,\varvec{\beta }_{j,M_j-1})$$\end{document} excludes coefficients for response m on j, and

(B5) ηjcm=acβjm-Cjcm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \eta _{jcm}&=\varvec{a}_c^\top \varvec{\beta }_{jm}-C_{jcm}\end{aligned}$$\end{document}
(B6) Cjcm=lnmmexp(acβjm). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} C_{jcm}&=\ln \left( \sum _{m'\ne m} \exp (\varvec{a}_c^\top \varvec{\beta }_{jm'})\right) . \end{aligned}$$\end{document}

Full Conditional Distributions

δjpm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{jpm}$$\end{document} and γ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} The full conditional distribution for δjpm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta _{jpm}$$\end{document} is

(B7) p(δjpm|βjpm,γ,σβ2)p(βjpm|δjpm,σβ2)p(δjpm|γ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\delta _{jpm}|\beta _{jpm},\gamma ,\sigma ^2_{\beta })\propto p(\beta _{jpm}|\delta _{jpm},\sigma ^2_{\beta })p(\delta _{jpm}|\gamma ) \end{aligned}$$\end{document}

which is

(B8) δjpm|βjpm,γBernoulliγ~jpm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \delta _{jpm}|\beta _{jpm},\gamma \sim \text {Bernoulli}\left( \tilde{\gamma }_{jpm}\right) \end{aligned}$$\end{document}

where

(B9) γ~jpm=γp(βjpm|δjpm=1,σβ2)γp(βjpm|δjpm=1,σβ2)+(1-γ)p(βjpm|δjpm=0,σβ2) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \tilde{\gamma }_{jpm}=\frac{\gamma p(\beta _{jpm}|\delta _{jpm}=1,\sigma ^2_{\beta })}{\gamma p(\beta _{jpm}|\delta _{jpm}=1,\sigma ^2_{\beta })+(1-\gamma ) p(\beta _{jpm}|\delta _{jpm}=0,\sigma ^2_{\beta })} \end{aligned}$$\end{document}

The full conditional distribution for γ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} is

(B10) p(γ|Δ)p(Δ|γ)p(γ)=j=1Jp=1P-1m=1Mj-1p(δjpm|γ)p(γ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\gamma |\varvec{\Delta })\propto p(\varvec{\Delta }|\gamma )p(\gamma )=\left( \prod _{j=1}^J\prod _{p=1}^{P-1} \prod _{m=1}^{M_j-1} p(\delta _{jpm}|\gamma )\right) p(\gamma ) \end{aligned}$$\end{document}

so

(B11) γ|ΔBetaj=1Jp=1P-1m=1Mj-1δjpm+a,J(P-1)(M-1)-j=1Jp=1P-1m=1Mj-1δjpm+b \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \gamma |\varvec{\Delta }\sim \text {Beta}\left( \sum _{j=1}^J\sum _{p=1}^{P-1} \sum _{m=1}^{M_j-1} \delta _{jpm}+a,J(P-1)(M-1)-\sum _{j=1}^J\sum _{p=1}^{P-1} \sum _{m=1}^{M_j-1} \delta _{jpm}+b\right) \nonumber \\ \end{aligned}$$\end{document}

σβ2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\beta }^2$$\end{document} The full conditional distribution for σβ2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\beta }^2$$\end{document} is

(B12) σβ2B,ΔIGammaασ+12j=1JP(Mj-1),βσ+12j=1Jp=0P-1m=1Mj-1βjpm2(D(1-δjpm)+δjpm) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sigma _{\beta }^2 \mid \varvec{B}, \varvec{\Delta }\sim IGamma\left( \alpha _{\sigma }+\dfrac{1}{2}\sum _{j=1}^J P(M_j-1),\beta _{\sigma }+\dfrac{1}{2}\sum _{j=1}^J\sum _{p=0}^{P-1} \sum _{m=1}^{M_j-1}\beta _{jpm}^2(D(1-\delta _{jpm})+\delta _{jpm})\right) \nonumber \\ \end{aligned}$$\end{document}

αi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_i$$\end{document} and π \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }$$\end{document} We update α \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }$$\end{document} while integrating π \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }$$\end{document} out

(B13) p(α1,,αN)=p(α1,,αNπ)p(π)dπ=1B(d0)c=02K-1πcnc+d0,c-1dπ=B(n+d0)B(d0). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{\alpha }_1,\ldots ,\varvec{\alpha }_N)&= \int p(\varvec{\alpha }_1,\ldots ,\varvec{\alpha }_N\mid \varvec{\pi })p(\varvec{\pi })d\varvec{\pi }\nonumber \\&=\dfrac{1}{B(\varvec{d}_0)} \int \left( \prod _{c=0}^{2^K-1} \pi _{c}^{n_{c}+d_{0,c}-1}\right) \textrm{d} \varvec{\pi }\nonumber \\&=\dfrac{B(\varvec{n} + \varvec{d}_0)}{B(\varvec{d}_0)}. \end{aligned}$$\end{document}

Then, the full conditional prior distribution for αi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_i$$\end{document} is

(B14) p(αiv=cα(i))=p(α1,,αN)p(α1,,αi-1,αi+1,,αN)=nc(i)+1n-1+2K, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{\alpha }_i^{\top } \varvec{v}=c\mid \varvec{\alpha }_{(i)})&= \dfrac{p(\varvec{\alpha }_1,\ldots ,\varvec{\alpha }_N)}{p(\varvec{\alpha }_1,\ldots ,\varvec{\alpha }_{i-1},\varvec{\alpha }_{i+1},\ldots ,\varvec{\alpha }_N)}\nonumber \\&= \frac{n_{c(i)}+1}{n-1+2^K}, \end{aligned}$$\end{document}

where nc(i) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_{c(i)}$$\end{document} represents the number of individuals other than i that have attribute profile αc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_c$$\end{document} . Full conditional distribution of αi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_i$$\end{document} given y1:n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y}_{1:n}$$\end{document} and α(i) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_{(i)}$$\end{document} is

(B15) p(αiv=cα(i),y1:n,B(t-1))p(αiv=cα(i))p(yiαiv=c,B(t-1))(nc(i)+1)p(yiαiv=c,B(t-1)), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{\alpha }_i^{\top } \varvec{v}=c\mid \varvec{\alpha }_{(i)},\varvec{y}_{1:n},\varvec{B}^{(t-1)})&\propto p(\varvec{\alpha }_i^{\top } \varvec{v}=c\mid \varvec{\alpha }_{(i)})p(\varvec{y}_i\mid \varvec{\alpha }_i^{\top } \varvec{v}=c,\varvec{B}^{(t-1)})\nonumber \\&\propto (n_{c(i)}+1)p(\varvec{y}_i\mid \varvec{\alpha }_i^{\top } \varvec{v}=c,\varvec{B}^{(t-1)}), \end{aligned}$$\end{document}

we update αi \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\alpha }_i$$\end{document} sequentially with weight proportional to (nc(i)+1)p(yiαiv=c,B(t-1)) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n_{c(i)}+1)p(\varvec{y}_i\mid \varvec{\alpha }_i^{\top } \varvec{v}=c,\varvec{B}^{(t-1)})$$\end{document} . For π \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }$$\end{document} , we have

(B16) πα1:nDirichlet(n+d0), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\pi }\mid \varvec{\alpha }_{1:n} \sim Dirichlet(\varvec{n}+\varvec{d}_0), \end{aligned}$$\end{document}

where n=(n0,,n2K-1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{n}=(\varvec{n}_0,\ldots ,\varvec{n}_{2^K-1})$$\end{document} .

Item Parameters, βjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_{jm}$$\end{document} , and Augmented Parameters, wjcm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{jcm}$$\end{document} Applying the PG identity in Eq. B3 to Eq. B4 yields,

(B17) p(βjm|y1:n,j,A,Bj(m),δjm,wjm)p(βjm|δjm)c=02K-1expηjcmnjcm1+expηjcmncp(βjm|δjm)c=02K-1expy~jcmηjcm-wjcmηjcm22, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{\beta }_{jm}|\varvec{y}_{1:n,j},\varvec{A},\varvec{B}_{j(m)},\varvec{\delta }_{jm},\varvec{w}_{jm})&\propto p(\varvec{\beta }_{jm}|\varvec{\delta }_{jm}) \prod _{c=0}^{2^K-1} \frac{\left[ \exp \left( \eta _{jcm} \right) \right] ^{n_{jcm}}}{\left[ 1+\exp \left( \eta _{jcm} \right) \right] ^{n_c}}\nonumber \\&\propto p(\varvec{\beta }_{jm}|\varvec{\delta }_{jm}) \prod _{c=0}^{2^K-1} \exp \left( {\tilde{y}}_{jcm}\eta _{jcm}-\frac{w_{jcm}\eta _{jcm}^2}{2}\right) , \end{aligned}$$\end{document}

where y~jcm=njcm-nc/2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\tilde{y}}}_{jcm}=n_{jcm}-n_c/2$$\end{document} and wjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{jm}$$\end{document} is a 2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^K$$\end{document} vector with element c defined as a PG random variable wjcm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{jcm}$$\end{document} with full conditional distribution of wjcm|A,BjPG(nc,ηjcm) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{jcm}|\varvec{A},\varvec{B}_j\sim \text {PG}(n_c,\eta _{jcm})$$\end{document} . We see,

(B18) p(βjm|y1:n,j,A,Bj(m),δjm,wjm)p(βjmδjm)c=02K-1exp-ωjcm2y~jcmωjcm-ηjcm2=p(βjmδjm)c=02K-1exp-ωjcm2zjcm-acβjm2=p(βjmδjm)exp-12zjm-AβjmΩjmzjm-Aβjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&p(\varvec{\beta }_{jm}|\varvec{y}_{1:n,j},\varvec{A},\varvec{B}_{j(m)},\varvec{\delta }_{jm},\varvec{w}_{jm})\propto p(\varvec{\beta }_{jm}\mid \varvec{\delta }_{jm}) \prod _{c=0}^{2^K-1} \exp \left\{ -\frac{\omega _{jcm}}{2} \left( \frac{{{\tilde{y}}}_{jcm}}{\omega _{jcm}}-\eta _{jcm}\right) ^2\right\} \nonumber \\&\quad = p(\varvec{\beta }_{jm}\mid \varvec{\delta }_{jm}) \prod _{c=0}^{2^K-1} \exp \left\{ -\frac{\omega _{jcm}}{2} \left( z_{jcm}-\varvec{a}_c^\top \varvec{\beta }_{jm}\right) ^2\right\} \nonumber \\&\quad = p(\varvec{\beta }_{jm}\mid \varvec{\delta }_{jm}) \exp \left\{ -\frac{1}{2}\left( \varvec{z}_{jm}-{\textbf {A}}\varvec{\beta }_{jm}\right) ^\top \varvec{\Omega }_{jm}\left( \varvec{z}_{jm}-{\textbf {A}}\varvec{\beta }_{jm}\right) \right\} \end{aligned}$$\end{document}

where A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textbf {A}}}$$\end{document} is a 2K×P \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^K\times P$$\end{document} design matrix and

(B19) zjcm=y~jcmωjcm+Cjcm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} z_{jcm}&=\frac{{{\tilde{y}}}_{jcm}}{\omega _{jcm}}+C_{jcm}\end{aligned}$$\end{document}
(B20) zjm=(z0jm,,z2K-1,jm). \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{z}_{jm}&=(z_{0jm},\dots ,z_{2^K-1,jm})^\top . \end{aligned}$$\end{document}

Since the prior distribution of βjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_{jm}$$\end{document} given δjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\delta }_{jm}$$\end{document} is

(B21) βjmδjmN(0,Σjm), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\beta }_{jm}\mid \varvec{\delta }_{jm} \sim {\mathcal {N}} (0,\varvec{\Sigma }_{jm}), \end{aligned}$$\end{document}

where Σjm=σβ2diag(vjm0,,vjm,2K-1) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Sigma }_{jm}=\sigma _\beta ^2 \text {diag}(v_{jm0},\dots ,v_{jm,2^K-1})$$\end{document} and vjmp=δjmp+(1-δjmp)/D \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{jmp}=\delta _{jmp}+(1-\delta _{jmp})/D$$\end{document} . Then, adding the prior term from the exponent for βjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_{jm}$$\end{document} yields the posterior distribution

(B22) p(βjm|y1:n,j,A,Bj(m),δjm,wjm)p(βjmδjm)c=02K-1exp-ωjcm2y~jcmωjcm-ηjcm2exp-12βjmΣjm-1βjm+zjm-AβjmΩjmzjm-Aβjmexp-12βjm-μjmVjmβjm-μjm. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\varvec{\beta }_{jm}|\varvec{y}_{1:n,j},\varvec{A},\varvec{B}_{j(m)},\varvec{\delta }_{jm},\varvec{w}_{jm})&\propto p(\varvec{\beta }_{jm}\mid \varvec{\delta }_{jm}) \prod _{c=0}^{2^K-1} \exp \left\{ -\frac{\omega _{jcm}}{2} \left( \frac{{{\tilde{y}}}_{jcm}}{\omega _{jcm}}-\eta _{jcm}\right) ^2\right\} \nonumber \\&\propto \exp \left\{ -\frac{1}{2}\left( \varvec{\beta }_{jm}^{\top }\varvec{\Sigma }_{jm}^{-1} \varvec{\beta }_{jm}+\left( \varvec{z}_{jm}-{{\textbf {A}}}\varvec{\beta }_{jm}\right) ^\top \varvec{\Omega }_{jm}\left( \varvec{z}_{jm}-{{\textbf {A}}}\varvec{\beta }_{jm}\right) \right) \right\} \nonumber \\&\propto \exp \left\{ -\frac{1}{2} \left( \varvec{\beta }_{jm}-\varvec{\mu }_{jm}\right) ^\top {\textbf{V}}_{jm} \left( \varvec{\beta }_{jm}-\varvec{\mu }_{jm}\right) \right\} . \end{aligned}$$\end{document}

Therefore, the full conditional distribution of βjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_{jm}$$\end{document} is

(B23) βjmY1:n,j,A,Bj(m),δjm,wjmN2Kμjm,Vjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\beta }_{jm}&\mid \varvec{Y}_{1:n,j},\varvec{A},\varvec{B}_{j(m)},\varvec{\delta }_{jm},\varvec{w}_{jm}\sim {\mathcal {N}}_{2^K}\left( \varvec{\mu }_{jm},{\textbf{V}}_{jm}\right) \end{aligned}$$\end{document}
(B24) Vjm=AΩjmA+Σjm-1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\textbf{V}}_{jm}&= \varvec{A}^\top \varvec{\Omega }_{jm}\varvec{A}+\varvec{\Sigma }_{jm}^{-1}\end{aligned}$$\end{document}
(B25) μjm=Vjm-1AΩjmzjm=Vjm-1Ay~jm+ΩjmCjm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\mu }_{jm}&={\textbf{V}}_{jm}^{-1} \varvec{A}^\top \varvec{\Omega }_{jm}\varvec{z}_{jm}={\textbf{V}}_{jm}^{-1} \varvec{A}^\top \left( \tilde{\varvec{y}}_{jm}+\varvec{\Omega }_{jm}\varvec{C}_{jm}\right) \end{aligned}$$\end{document}

where Σjm=σβ2diag(vjm0,,vjmP) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Sigma }_{jm}=\sigma _\beta ^2 \text {diag}(v_{jm0},\dots ,v_{jmP})$$\end{document} and vjmp=δjmp+(1-δjmp)/D \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_{jmp}=\delta _{jmp}+(1-\delta _{jmp})/D$$\end{document} . Note we use the second equality in Eq. B25 to avoid numerical issues associated with dividing by a ωjcm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{jcm}$$\end{document} that is zero.

Similarly, if we instead sample one coefficient at a time, we need the full conditional distribution of βjmp \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{jmp}$$\end{document} as follows:

(B26) p(βjmp|y1:n,j,A,Bj(m),qj,wjm)p(βjmp)c=02K-1exp-ωjcm2y~jcmωjcm-ηjcm2=p(βjmp)exp-12zjm-AβjmΩjmzjm-Aβjmexp-βjmp22Σjmpexp-12z~jm-ApβjmpΩjmz~jm-Apβjmpβjm-μjmVjmβjm-μjm. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} p(\beta _{jmp}|\varvec{y}_{1:n,j},\varvec{A},\varvec{B}_{j(m)},\varvec{q}_j,\varvec{w}_{jm})&\propto p(\beta _{jmp}) \prod _{c=0}^{2^K-1} \exp \left\{ -\frac{\omega _{jcm}}{2} \left( \frac{{{\tilde{y}}}_{jcm}}{\omega _{jcm}}-\eta _{jcm}\right) ^2\right\} \nonumber \\&= p(\beta _{jmp}) \exp \left\{ -\frac{1}{2}\left( \varvec{z}_{jm}-{{\textbf {A}}}\varvec{\beta }_{jm}\right) ^\top \varvec{\Omega }_{jm}\left( \varvec{z}_{jm}-{{\textbf {A}}}\varvec{\beta }_{jm}\right) \right\} \nonumber \\&\propto \exp \left\{ -\frac{\beta _{jmp}^2}{2\varvec{\Sigma }_{jmp}} \right\} \exp \left\{ -\frac{1}{2} \left( \tilde{\varvec{z}}_{jm}-\varvec{A}_p\beta _{jmp}\right) ^\top \varvec{\Omega }_{jm}\left( \tilde{\varvec{z}}_{jm}-\varvec{A}_p\beta _{jmp}\right) \right\} \nonumber \\&\propto \left( \varvec{\beta }_{jm}-\varvec{\mu }_{jm}\right) ^\top {\textbf{V}}_{jm} \left( \varvec{\beta }_{jm}-\varvec{\mu }_{jm}\right) . \end{aligned}$$\end{document}

Therefore, the full conditional distribution for βjmp \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{jmp}$$\end{document} given Y1:n,j \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Y}_{1:n,j}$$\end{document} , A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}$$\end{document} , βjm(p) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\beta }_{jm(p)}$$\end{document} , and Bj(m) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}_{j(m)}$$\end{document} is

(B27) βjmpY1:n,j,δjmp,A,βjm(p),Bj(m)N(μjmp,σjmp2), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \beta _{jmp}\mid \varvec{Y}_{1:n,j},\delta _{jmp},\varvec{A}, \varvec{\beta }_{jm(p)},\varvec{B}_{j(m)}\sim \mathcal N(\mu _{jmp},\sigma _{jmp}^2), \end{aligned}$$\end{document}
(B28) σjmp2=1ApΩjmAp+1/σβ2vjmp, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sigma _{jmp}^2&=\frac{1}{\varvec{A}_p^\top \varvec{\Omega }_{jm}\varvec{A}_p + 1/\sigma ^2_\beta v_{jmp}},\end{aligned}$$\end{document}
(B29) μjmp=σjmp2ApΩjmz~jm=σjmp2Apy~jm+ΩjmCjm-ΩjmA(p)βjm(p), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mu _{jmp}&=\sigma _{jmp}^2 \varvec{A}_p^\top \varvec{\Omega }_{jm} \tilde{\varvec{z}}_{jm} = \sigma _{jmp}^2 \varvec{A}_p^\top \left( \tilde{\varvec{y}}_{jm} + \varvec{\Omega }_{jm} \varvec{C}_{jm} - \varvec{\Omega }_{jm} {\textbf{A}}_{(p)}\varvec{\beta }_{jm(p)} \right) , \end{aligned}$$\end{document}
(B30) z~jm=zjm-A(p)βjm(p)=zjm-Aβjm+Apβjmp, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \tilde{\varvec{z}}_{jm}&=\varvec{z}_{jm}-{{\textbf {A}}}_{(p)}\varvec{\beta }_{jm(p)}=\varvec{z}_{jm} - {{\textbf {A}}}\varvec{\beta }_{jm}+\varvec{A}_p\beta _{jmp}, \end{aligned}$$\end{document}

where Ap \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}_p$$\end{document} is column p of A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textbf {A}}}$$\end{document} and A(p) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textbf {A}}}_{(p)}$$\end{document} excludes column p of A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textbf {A}}}$$\end{document} . Note computation of the conditional mean and variance requires, ApΩjmAp=c=02K-1Apcωjcm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\textbf {A}}}_{p}^\top \varvec{\Omega }_{jm}{{\textbf {A}}}_{p}=\sum _{c=0}^{2^K-1} \text{ A}_{pc}\omega _{jcm}$$\end{document} .

Appendix C Starting Values of B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}$$\end{document}

In this appendix, we will show the starting value generation steps of coefficients in B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}$$\end{document} .

  1. Perform a k- \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-$$\end{document} means clustering (MacQueen, Reference MacQueen1967) on the observed responses.

    1. First, define the binary response array Yb \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Y}^b$$\end{document} with size N×J×M \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times J\times M$$\end{document} , where Yijmb=IYij=m \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_{ijm}^{b}=\varvec{I}\left\{ Y_{ij}=m \right\} $$\end{document} . Then, reshape the three dimensional array Yb \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Y}^b$$\end{document} into a matrix Y \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Y}^*$$\end{document} with size N×JM \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times JM$$\end{document} , through combining columns of every slice of Yb \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Y}^b$$\end{document} .

    2. Partition the JM- \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$JM-$$\end{document} dimensional vectors corresponding to the N respondents Y=(y1,,yN) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y^*=(y_1^*,\ldots ,y_N^*)^\top $$\end{document} into 2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^K$$\end{document} distinct groups with nc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_{c^\prime }$$\end{document} respondents per group.

    3. Initialize the category response probabilities described in Eq. 1 such that θjcΘJM×2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _{j^\prime c^\prime }\in \varvec{\Theta }_{JM\times 2^K}$$\end{document} is the j \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j^\prime $$\end{document} -th element of the cluster center for group c \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c^\prime $$\end{document} .

  2. Assuming K factors, perform an exploratory factor analysis (EFA) on the slices of observed responses array Ymb \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Y}^b_m$$\end{document} , m=1,,M-1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=1,\ldots ,M-1$$\end{document} .

    1. Generate factor scores for the i=1,,N \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i = 1,\ldots ,N$$\end{document} respondents across the j=1,,J \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j = 1,\ldots ,J$$\end{document} items and k=1,,K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k = 1,\ldots ,K$$\end{document} attributes, θ~ikm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\theta }_{ik}^m$$\end{document} .

    2. Compute within-cluster averages of the factor scores θ~ckm=1ncic=1ncθ~ickm \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\theta }_{c^{^\prime }k}^m = \dfrac{1}{n_c^{^\prime }}\sum _{i^{c^\prime }=1}^{n_{c^\prime }} \tilde{\theta }_{i^{c^\prime } k}^m$$\end{document} for each of the 2K \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^K$$\end{document} groups.

    3. Dichotomize the within-cluster factor score averages into pseudo-attributes as α~ckm=Iθ~ckm>0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\alpha }_{c^{^\prime }k}^m = I\left( \tilde{\theta }_{c^{^\prime }k}^m>0 \right) $$\end{document} .

  3. Define the pseudo-attribute profiles α~cm=(α~c1m,,α~cKm) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\varvec{\alpha }}_{c^{^\prime }}^m = (\tilde{\alpha }_{c^{^\prime }1}^m,\ldots ,\tilde{\alpha }_{c^{^\prime }K}^m)^\top $$\end{document} in terms of the binary-integer bijection (α~cm)v=c \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\tilde{\varvec{\alpha }}_{c^{^\prime }}^m)^\top \varvec{v} = c$$\end{document} .

  4. Based on the bijection integers in step 3, swap the label of latent class of the initialized category response probabilities matrix got in step 1.

  5. For m=1,2,,M-1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=1,2,\ldots ,M-1$$\end{document} , initialize the m-th slice of B \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}$$\end{document} as follows:

    1. Define the category response probability as Logit-1(θjcm)=αcβjm(0)Mαβ:J×2K(0) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Logit^{-1}(\theta _{jcm}) = \varvec{\alpha }_c^\top \varvec{\beta }_{jm}^{(0)}\in \varvec{M}^{(0)}_{\alpha \beta :J\times 2^K}$$\end{document} .

    2. Calculate Bm(0)=Mαβ(0)A(AA)-1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{B}_m^{(0)} = \varvec{M}^{(0)}_{\alpha \beta }\varvec{A}(\varvec{A}^\top \varvec{A})^{-1}$$\end{document} , where A \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{A}$$\end{document} is the 2K×P \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^K \times P$$\end{document} design matrix.

Appendix D Simulation Results for Dense Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document}

The unknown denser true Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} and true Q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document} matrices for each option are shown as follows (columns in Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} follow the same order as the design vector shown in Eq. 3):

  • Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} cube with K=2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=2$$\end{document}

    (B31) Δm=1=101011001010110010101100101011001010110010101100101011001010111111111111,Δm=2=101011001111110011001111101011001010111110101111101011001100101011001010,Δm=3=110010101010110011001100110010101010101011111100101011111010110010101111 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\Delta }_{m=1}= \left( \begin{array}{llll} 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 1 &{} 1 &{} 1 \end{array}\right) , \quad \varvec{\Delta }_{m=2}=\left( \begin{array}{llll} 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \end{array}\right) , \quad \varvec{\Delta }_{m=3}=\left( \begin{array}{llll} 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 1 &{} 1 \end{array}\right) \end{aligned}$$\end{document}
  • Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} cube with K=3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=3$$\end{document}

    (B32) Δm=1=100100010100001100000100100010100001100000100100010100001100000101100111101001101010101100111101001101010111111111111111111111,Δm=2=111010011101001111111101000010010001111111100100010110011011001111111111000001111111110000010100001101010100100011000001010000,Δm=3=101000011000001010000101000011010101001000111010010110011101010100100011111111100000111010011111111001000101100111000001111111 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \varvec{\Delta }_{m=1}= \left( \begin{array}{llllllll} 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 1 &{} 0 &{} 0 &{} 1 \\ 1 &{} 1 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 1 &{} 1 &{} 0 &{} 0 &{} 1 \\ 1 &{} 1 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 \end{array}\right) , \varvec{\Delta }_{m=2}= \left( \begin{array}{llllllll} 1 &{} 1 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 1 &{} 0 &{} 0 &{} 1 \\ 1 &{} 0 &{} 1 &{} 1 &{} 0 &{} 0 &{} 1 \\ 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \end{array}\right) , \varvec{\Delta }_{m=3}= \left( \begin{array}{llllllll} 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 &{} 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 1 &{} 0 &{} 0 &{} 1 \\ 1 &{} 1 &{} 0 &{} 1 &{} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 \\ 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 1 &{} 0 &{} 0 &{} 1 \\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 &{} 1 \end{array}\right) \end{aligned}$$\end{document}
  • Q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document} matrices with K=2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=2$$\end{document}

    (B33) Qm=1=011001100110011001100110011001111111,Qm=2=011011101011011001110111011010011001,Qm=3=100101101010100101011110011101100111 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\varvec{Q}}_{m=1}= \left( \begin{array}{ll} 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 1 \\ 1 &{} 1 \\ 1 &{} 1 \end{array}\right) , \quad {\varvec{Q}}_{m=2}=\left( \begin{array}{ll} 0 &{} 1 \\ 1 &{} 0 \\ 1 &{} 1 \\ 1 &{} 0 \\ 1 &{} 0 \\ 1 &{} 1 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 1 \\ 0 &{} 1 \\ 1 &{} 1 \\ 0 &{} 1 \\ 1 &{} 0 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \end{array}\right) , \quad {\varvec{Q}}_{m=3}=\left( \begin{array}{ll} 1 &{} 0 \\ 0 &{} 1 \\ 0 &{} 1 \\ 1 &{} 0 \\ 1 &{} 0 \\ 1 &{} 0 \\ 1 &{} 0 \\ 0 &{} 1 \\ 0 &{} 1 \\ 0 &{} 1 \\ 1 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 1 \\ 0 &{} 1 \\ 1 &{} 0 \\ 0 &{} 1 \\ 1 &{} 1 \end{array}\right) \end{aligned}$$\end{document}
  • Q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document} matrices with K=3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K=3$$\end{document}

    (B34) Qm=1=001010100001010100001010100011110101011110101111111111,Qm=2=110110111010001111001011011111100111100010101001100010,Qm=3=010100010010101001110011101001111100110111001011100111 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\varvec{Q}}_{m=1}= \left( \begin{array}{lll} 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 1 &{} 1 \\ 1 &{} 1 &{} 0 \\ 1 &{} 0 &{} 1 \\ 0 &{} 1 &{} 1 \\ 1 &{} 1 &{} 0 \\ 1 &{} 0 &{} 1 \\ 1 &{} 1 &{} 1 \\ 1 &{} 1 &{} 1 \\ 1 &{} 1 &{} 1 \end{array}\right) , \quad {\varvec{Q}}_{m=2}=\left( \begin{array}{lll} 1 &{} 1 &{} 0 \\ 1 &{} 1 &{} 0 \\ 1 &{} 1 &{} 1 \\ 0 &{} 1 &{} 0 \\ 0 &{} 0 &{} 1 \\ 1 &{} 1 &{} 1 \\ 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 1 \\ 0 &{} 1 &{} 1 \\ 1 &{} 1 &{} 1 \\ 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 1 \\ 1 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 1 \\ 0 &{} 0 &{} 1 \\ 1 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 \end{array}\right) , \quad {\varvec{Q}}_{m=3}=\left( \begin{array}{lll} 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 \\ 0 &{} 1 &{} 0 \\ 1 &{} 0 &{} 1 \\ 0 &{} 0 &{} 1 \\ 1 &{} 1 &{} 0 \\ 0 &{} 1 &{} 1 \\ 1 &{} 0 &{} 1 \\ 0 &{} 0 &{} 1 \\ 1 &{} 1 &{} 1 \\ 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 0 \\ 1 &{} 1 &{} 1 \\ 0 &{} 0 &{} 1 \\ 0 &{} 1 &{} 1 \\ 1 &{} 0 &{} 0 \\ 1 &{} 1 &{} 1 \end{array}\right) \end{aligned}$$\end{document}

Simulation results are shown in Table 6.

Table 6 Summary of simulation performance for RLCM with dense Δ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} and Q \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document}

MAD = mean absolute deviation; EAR = element-wise accuracy rate

Footnotes

MAD = mean absolute deviation; EAR = element-wise accuracy rate

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

Allman, E. S., Matias, C., Rhodes, J. A.. (2009). Identifiability of parameters in latent structure models with many observed variables. Annals of Statistics, 37, 30993132.CrossRefGoogle Scholar
Bacci, S., Bartolucci, F., Gnaldi, M.. (2014). A class of multidimensional latent class IRT models for ordinal polytomous item responses. Communications in Statistics-Theory and Methods, 43(4), 787800.CrossRefGoogle Scholar
Balamuta, J. J., & Culpepper, S. A. (2022). Exploratory restricted latent class models with monotonicity requirements under Polya–gamma data augmentation. Psychometrika 1–43.CrossRefGoogle Scholar
Bartolucci, F.. (2007). A class of multidimensional IRT models for testing unidimensionality and clustering items. Psychometrika, 72, 141157.CrossRefGoogle Scholar
Bradshaw, L., Templin, J.. (2014). Combining item response theory and diagnostic classification models: A psychometric model for scaling ability and diagnosing misconceptions. Psychometrika, 79(3), 403425.CrossRefGoogle ScholarPubMed
Brooks, S. P., Gelman, A.. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7(4), 434455.CrossRefGoogle Scholar
Chen, J., de la Torre, J.. (2013). A general cognitive diagnosis model for expert-defined polytomous attributes. Applied Psychological Measurement, 37(6), 419437.CrossRefGoogle Scholar
Chen, J., Zhou, H.. (2017). Test designs and modeling under the general nominal diagnosis model framework. PLoS ONE, 12(6.Google ScholarPubMed
Chen, Y., Culpepper, S., Liang, F.. (2020). A sparse latent class model for cognitive diagnosis. Psychometrika, 85, 121153.CrossRefGoogle ScholarPubMed
Chen, Y., Liu, J., Xu, G., Ying, Z.. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110(510), 850866.CrossRefGoogle Scholar
Chen, Y., Liu, Y., Culpepper, S. A., Chen, Y.. (2021). Inferring the number of attributes for the exploratory DINA model. Psychometrika, 86(1), 3064.CrossRefGoogle ScholarPubMed
Chiu, C.-Y., Douglas, J., Li, X.. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74, 633665.CrossRefGoogle Scholar
Culpepper, S. A.. (2019). An exploratory diagnostic model for ordinal responses with binary attributes: Identifiability and estimation. Psychometrika, 84(4), 921940.CrossRefGoogle ScholarPubMed
Culpepper, S. A., & Balamuta, J. J. (2021). Inferring latent structure in polytomous data with a higher-order diagnostic model. Multivariate Behavioral Research 1–19.Google Scholar
Dang, N. V. (2015). Complex powers of analytic functions and meromorphic renormalization in QFT. arXiv preprint arXiv:1503.00995 .Google Scholar
De La Torre, J.. (2009). A cognitive diagnosis model for cognitively based multiple-choice options. Applied Psychological Measurement, 33(3), 163183.CrossRefGoogle Scholar
de la Torre, J.. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179199.CrossRefGoogle Scholar
DeYoreo, M., Reiter, J. P., Hillygus, D. S.. (2017). Bayesian mixture models with focused clustering for mixed ordinal and nominal data. Bayesian Analysis, 12(3), 679703.CrossRefGoogle Scholar
DiBello, L. V., Henson, R. A., Stout, W. F.. (2015). A family of generalized diagnostic classification models for multiple choice option-based scoring. Applied Psychological Measurement, 39(1), 6279.CrossRefGoogle ScholarPubMed
Dunson, D. B., Xing, C.. (2009). Nonparametric Bayes modeling of multivariate categorical data. Journal of the American Statistical Association, 104(487), 10421051.CrossRefGoogle Scholar
Fang, G., Liu, J., Ying, Z.. (2019). On the identifiability of diagnostic classification models. Psychometrika, 84(1), 1940.CrossRefGoogle ScholarPubMed
George, E. I., McCulloch, R. E.. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88(423), 881889.CrossRefGoogle Scholar
Gnaldi, M., Bacci, S., Kunze, T., Greiff, S.. (2020). Students’ complex problem solving profiles. Psychometrika, 85, 469501.CrossRefGoogle ScholarPubMed
Goodman, L. A.. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61(2), 215231.CrossRefGoogle Scholar
Gu, Y., & Dunson, D. B. (2021). Bayesian pyramids: Identifiable multilayer discrete latent structure models for discrete data. arXiv preprint arXiv:2101.10373 .Google Scholar
Holmes, C. C., Held, L.. (2006). Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 1(1), 145168.Google Scholar
Huang, G.-H., Bandeen-Roche, K.. (2004). Building an identifiable latent class model with covariate effects on underlying and measured variables. Psychometrika, 69(1), 532.CrossRefGoogle Scholar
Jiang, Z., Templin, J.. (2019). Gibbs samplers for logistic item response models via the Pólya-Gamma distribution: A computationally efficient data-augmentation strategy. Psychometrika, 84(2), 358374.CrossRefGoogle ScholarPubMed
Jimenez, A., Balamuta, J. J., & Culpepper, S. A. (2023). A sequential exploratory diagnostic model using a Pólya-gamma data augmentation strategy. British Journal of Mathematical and Statistical Psychology.CrossRefGoogle Scholar
Kruskal, J.. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and its Applications, 18, 95138.CrossRefGoogle Scholar
Kruskal, J. B.. (1976). More factors than subjects, tests and treatments: An indeterminacy theorem for canonical decomposition and individual differences scaling. Psychometrika, 41(3), 281293.CrossRefGoogle Scholar
Kuo, B.-C., Chen, C.-H., Yang, C.-W., Mok, M. M. C.. (2016). Cognitive diagnostic models for tests with multiple-choice and constructed-response items. Educational Psychology, 36(6), 11151133.CrossRefGoogle Scholar
Ma, W., de la Torre, J.. (2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69(3), 253275.CrossRefGoogle ScholarPubMed
Ma, W., de la Torre, J.. (2019). Category-level model selection for the sequential G-DINA model. Journal of Educational and Behavioral Statistics, 44(1), 4577.CrossRefGoogle Scholar
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 281–297).Google Scholar
Matsaglia, G., Styan, G. P. H.. (1974). Equalities and inequalities for ranks of matrices. Linear and Multilinear Algebra, 2(3), 269292.CrossRefGoogle Scholar
McHugh, R. B.. (1956). Efficient estimation and local identification in latent class analysis. Psychometrika, 21(4), 331347.CrossRefGoogle Scholar
Mityagin, B. S.. (2020). The zero set of a real analytic function. Mathematical Notes, 107, 529530.CrossRefGoogle Scholar
Murray, J. S., Reiter, J. P.. (2016). Multiple imputation of missing categorical and continuous values via Bayesian mixture models with local dependence. Journal of the American Statistical Association, 111(516), 14661479.CrossRefGoogle Scholar
Polson, N. G., Scott, J. G., Windle, J.. (2013). Bayesian inference for logistic models using Pólya-gamma latent variables. Journal of the American Statistical Association, 108(504), 13391349.CrossRefGoogle Scholar
Royle, J. A., Link, W. A.. (2005). A general class of multinomial mixture models for anuran calling survey data. Ecology, 86(9), 25052512.CrossRefGoogle Scholar
Shear, B. R., & Roussos, L. A. (2017). Validating a distractor-driven geometry test using a generalized diagnostic classification model. In Understanding and investigating response processes in validation research (pp. 277–304). Springer.CrossRefGoogle Scholar
Si, Y., Reiter, J. P.. (2013). Nonparametric Bayesian multiple imputation for incomplete categorical variables in large-scale assessment surveys. Journal of Educational and Behavioral Statistics, 38(5), 499521.CrossRefGoogle Scholar
Templin, J., Henson, R. A., Rupp, E., Jang, A. A., & Ahmed, M. (2008). Cognitive diagnosis models for nominal response data. New York, NY: In Annual Meeting of the National Council on Measurement in Education.Google Scholar
Vermunt, J. K., Van Ginkel, J. R., Van der Ark, L. A., Sijtsma, K.. (2008). Multiple imputation of incomplete categorical data using latent class analysis. Sociological Methodology, 38(1), 369397.CrossRefGoogle Scholar
Wagner, R. F., Wells, K. A.. (1985). A refined neurobehavioral inventory of hemispheric preference. Journal of Clinical Psychology, 41(5), 671676.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Xu, G.. (2017). Identifiability of restricted latent class models with binary responses. Annals of Statistics, 45(2), 675707.CrossRefGoogle Scholar
Xu, G., Shang, Z.. (2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, 113(523), 12841295.CrossRefGoogle Scholar
Yigit, H. D., Sorrel, M. A., de la Torre, J.. (2019). Computerized adaptive testing for cognitively based multiple-choice data. Applied Psychological Measurement, 43(5), 388401.CrossRefGoogle ScholarPubMed
Figure 0

Table 1 Summary of simulation performance for RLCM and ULCM.

Figure 1

Table 2 Summary of mean absolute deviations (MADs) of RLCM and ULCM item response probabilities by item for two selected conditions.

Figure 2

Table 3 Wagner preference inventory items, anchors, and response frequencies.

Figure 3

Figure 1 The maximum PSRF for Wagner Preference Inventory data.

Figure 4

Table 4 Estimated Θ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\varvec{\Theta }}$$\end{document} for Wagner Preference Inventory data.

Figure 5

Table 5 Estimated distribution of attributes in Wagner Preference Inventory data.

Figure 6

Table 6 Summary of simulation performance for RLCM with dense Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\Delta }$$\end{document} and Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{Q}$$\end{document}