Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T10:29:49.488Z Has data issue: false hasContentIssue false

A Procedure for Ordering Object Pairs Consistent with the Multidimensional Unfolding Model

Published online by Cambridge University Press:  01 January 2025

George Rabinowitz*
Affiliation:
University of North Carolina
*
Requests for reprints should be sent to George Rabinowitz, Department of Political Science, University of North Carolina, Chapel Hill, North Carolina 27514.

Abstract

A procedure for ordering object (stimulus) pairs based on individual preference ratings is described. The basic assumption is that individual responses are consistent with a nonmetric multidimensional unfolding model. The method requires data where a numerical response is independently generated for each individual-object pair. In conjunction with a nonmetric multidimensional scaling procedure, it provides a vehicle for recovering meaningful object configurations.

Type
Original Paper
Copyright
Copyright © 1976 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author wishes to thank Jack Hoadley, Larry Mayer, Sheldon Newhouse, Stuart Rabinowitz, Forrest Young, and three anonymous reviewers for their useful suggestions.

References

Reference Note

Rabinowitz, G. B. Spatial models of electoral choice: An empirical analysis, 1973, Chapel Hill, North Carolina: Institute for Research in Social Science.Google Scholar

References

Campbell, A., Converse, P. E., Miller, W. E., & Stokes, D. E. The American Voter, 1960, New York: Wiley.Google Scholar
Carroll, J. D. Individual differences and multidimensional scaling. In Shepard, R. N. Romney, A. K. & Nerlove, S. B.(Eds.), Multi-dimensional scaling, 1972, New York: Seminar Press.Google Scholar
Converse, P. E. The nature of belief systems in mass publics. In Apter, D. E.(Eds.), Ideology and discontent, 1964, New York: Free Press.Google Scholar
Converse, P. E., Miller, W. E., Rusk, J. G., & Wolfe, A. C. Continuity and change in American politics: Parties and issues in the 1968 election. American Political Science Review, 1969, 63, 10831105.CrossRefGoogle Scholar
Coombs, C. H. Psychological scaling without a unit of measurement. Psychological Review, 1950, 57, 145158.CrossRefGoogle ScholarPubMed
Coombs, C. H. A theory of data, 1964, New York: Wiley.Google Scholar
Davidson, J. A. A geometrical analysis of the unfolding model: non-degenerate solutions. Psychometrika, 1972, 37, 193216.CrossRefGoogle Scholar
Davidson, J. A. A geometrical analysis of the unfolding model: general solutions. Psychometrika, 1973, 38, 305336.CrossRefGoogle Scholar
Davis, O. A., & Hinich, M. A mathematical model of policy formation in a democratic society. In Bernd, J.(Eds.), Mathematical applications in political science II, 1966, Dallas: Southern Methodist University Press.Google Scholar
Davis, O. A., Hinich, M., & Ordeshook, P. An expository development of a mathematical model of the electoral process. American Political Science Review, 1970, 64, 426448.CrossRefGoogle Scholar
Downs, A. An economic theory of democracy, 1957, New York: Harper and Row.Google Scholar
Gleason, T. Multidimensional scaling of sociometric data, 1969, Ann Arbor: Institute for Social Research.Google Scholar
Guttman, L. A general nonmetric technique for finding the smallest coordinate space for a configuration of points. Psychometrika, 1968, 33, 469506.CrossRefGoogle Scholar
Hays, W. L. & Bennett, J. F. Multidimensional unfolding: determining configuration from complete rank order preference data. Psychometrika, 1961, 26, 221238.CrossRefGoogle Scholar
Jones, B. D. Some considerations in the use of nonmetric multidimensional scaling. Political Methodology, 1974, 1, 130.Google Scholar
Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 1964, 29, 127.CrossRefGoogle Scholar
Kruskal, J. B. Nonmetric multidimensional scaling: a numerical method. Psychometrika, 1964, 29, 2842.CrossRefGoogle Scholar
Kruskal, J. B. & Carroll, J. D. Geometric models and badness of fit functions. In Krishnaiah, P. R.(Eds.), International symposium of multivariate analysis, Dayton, Ohio, 1968, 1969, New York: Academic Press.Google Scholar
Mauser, G. A. A structural approach to predicting patterns of electoral substitution. In Shepard, R. N., Romney, A. K., and Nerlove, S. B.(Eds.), Multidimensional scaling. Volume 2, 1972, New York: Seminar Press.Google Scholar
Mueller, J. E. Presidential popularity from Truman to Johnson. American Political Science Review, 1970, 66, 979995.Google Scholar
Royden, H. L. Real analysis, 1968, London: Macmillan.Google Scholar
Schoneman, P. H. On metric multidimensional unfolding. Psychometrika, 1970, 35, 349366.CrossRefGoogle Scholar
Stokes, D. E. Spatial models of party competition. American Political Science Review, 1963, 57, 368377.CrossRefGoogle Scholar
Weisberg, H. F. & Rusk, J. G. Dimensions of candidate evaluations. American Political Science Review, 1970, 64, 11671185.CrossRefGoogle Scholar
Young, F. W. TORSCA—A FORTRAN IV program for nonmetric multidimensional scaling. Behavioral Science, 1968, 13, 343344.CrossRefGoogle Scholar
Young, F. W. Nonmetric multidimensional scaling: Recovery of metric information. Psychometrika, 1970, 35, 455473.CrossRefGoogle Scholar
Zinnes, J. L. & Griggs, R. A. Probabilistic, multidimensional unfolding analysis. Psychometrika, 1974, 39, 327350.CrossRefGoogle Scholar