Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T10:30:40.477Z Has data issue: false hasContentIssue false

A Partially Confirmatory Approach to the Multidimensional Item Response Theory with the Bayesian Lasso

Published online by Cambridge University Press:  01 January 2025

Jinsong Chen*
Affiliation:
The University of Hong Kong
*
Correspondence should be made to Jinsong Chen, Faculty of Education, The University of Hong Kong, Room 420, 4/F, Meng Wah Complex, Pokfulam Road, Hong Kong, China. Email: [email protected]

Abstract

For test development in the setting of multidimensional item response theory, the exploratory and confirmatory approaches lie on two ends of a continuum in terms of the loading and residual structures. Inspired by the recent development of the Bayesian Lasso (least absolute shrinkage and selection operator), this research proposes a partially confirmatory approach to estimate both structures using Bayesian regression and a covariance Lasso within a unified framework. The Bayesian hierarchical formulation is implemented using Markov chain Monte Carlo estimation, and the shrinkage parameters are estimated simultaneously. The proposed approach with different model variants and constraints was found to be flexible in addressing loading selection and local dependence. Both simulated and real-life data were analyzed to evaluate the performance of the proposed model across different situations.

Type
Theory and Methods
Copyright
Copyright © 2020 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full-information item factor analysis. Applied Psychological Measurement, 12 (3), 261280. CrossRefGoogle Scholar
Box, G. E. P., & Tiao, G. C. (1973). Bayesian inference in statistical analysis, Reading, MA: Addison-Wesley. Google Scholar
Casella, G., & George, E. I. (1992). Explaining the Gibbs sampler. The American Statistician, 46 (3), 167174. CrossRefGoogle Scholar
Chen, Y., Li, X., Liu, J., & Ying, Z. (2018). Robust measurement via a fused latent and graphical item response theory model. Psychometrika, 83 (3), 538562. CrossRefGoogle Scholar
Chen, Y., Li, X., & Zhang, S. (2019). Structured latent factor analysis for large-scale data: Identifiability, estimability, and their implications. Journal of the American Statistical Association, Google Scholar
Chib, S., & Greenberg, E. (1995). Understanding the Metropolis–Hastings algorithm. The American Statistician, 49 (4), 327335. CrossRefGoogle Scholar
Eaton, M. L. (1983). Multivariate statistics: A vector space approach, Beachwood, OH: Institute of Mathematical Statistics. Google Scholar
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists, Mahwah, NJ: L. Erlbaum Associates. Google Scholar
Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network psychometrics: Combining network and latent variable models. Psychometrika, 82 (4), 904927. CrossRefGoogle ScholarPubMed
Eysenck, S. B., & Barrett, P. (2013). Re-introduction to cross-cultural studies of the EPQ. Personality and Individual Differences, 54 (4), 485489. CrossRefGoogle Scholar
Eysenck, S. B., Eysenck, H. J., & Barrett, P. (1985). A revised version of the psychoticism scale. Personality and Individual Differences, 6 (1), 2129. CrossRefGoogle Scholar
Forero, C. G., & Maydeu-Olivares, A. (2009). Estimation of IRT graded response models: Limited versus full information methods. Psychological Methods, 14 (3), 275299. CrossRefGoogle ScholarPubMed
Gelman, A., Gilks, W. R., Richardson, S., & Spiegelharter, D. J. (1996). Inference and monitoring convergence. Markov Chain Monte Carlo in practice, London: Chapman & Hall. 131144. Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis, 2 London: Chapman & Hall. Google Scholar
Gelman, A., Meng, X. -L., & Stern, H. S. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6 733807. Google Scholar
Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6 (6), 721741. CrossRefGoogle ScholarPubMed
Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996). Markov chain Monte Carlo in practice, London: Chapman & Hall. Google Scholar
Gill, J. (2002). Bayesian methods: A social and behavioral sciences approach, Boca Raton, FL: Chapman & Hall/CRC. CrossRefGoogle Scholar
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika, 57 (1), 97109. CrossRefGoogle Scholar
Jennrich, R. I., & Sampson, P. F. (1966). Rotation for simple loadings. Psychometrika, 31 (3), 313323. CrossRefGoogle ScholarPubMed
Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34 (2), 183202. CrossRefGoogle Scholar
Khondker, Z. S., Zhu, H., Chu, H., Lin, W., & Ibrahim, J. G. (2013). The Bayesian covariance lasso. Statistics and Its Interface, 6 (2), 243259. Google ScholarPubMed
Lee, S. -Y. (2007). Structural equation modeling: A Bayesian approach, Hoboken, NJ: Wiley. CrossRefGoogle Scholar
Liu, X. (2008). Parameter expansion for sampling a correlation matrix: An efficient GPX-RPMH algorithm. Journal of Statistical Computation and Simulation, 78 (11), 10651076. CrossRefGoogle Scholar
Liu, X., & Daniels, M. J. (2006). A new efficient algorithm for sampling a correlation matrix based on parameter expansion and re-parameterization. Journal of Computational and Graphical Statistics, 15 (4), 897914. CrossRefGoogle Scholar
Lu, Z. H., Chow, S. M., & Loken, E. (2016). Bayesian factor analysis as a variable-selection problem: Alternative priors and consequences. Multivariate Behavioral Research, 51 (4), 519539. CrossRefGoogle ScholarPubMed
Meng, X. -L. (1994). Posterior predictive p-values. Annals of Statistics, 22 (3), 11421160. CrossRefGoogle Scholar
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equations of state calculations by fast computing machine. The Journal of Chemical Physics, 21 (6), 10871092. CrossRefGoogle Scholar
Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17 (3), 313335. CrossRefGoogle ScholarPubMed
Muthén, B. O., & Asparouhov, T. (2002). Latent variable analysis with categorical outcomes: Multi-group and growth modeling in Mplus. Mplus web notes: No. 4. Retrieved January 20, 2020, from http://www.statmodel.com/download/webnotes/CatMGLong.pdf.Google Scholar
Muthén, L. K., & Muthén, B. O. (1998–2015). Mplus user’s guide (7th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
Pan, J., Ip, E. H., & Dubé, L. (2017). An alternative to post hoc model modification in confirmatory factor analysis: The Bayesian lasso. Psychological Methods, 22 (4), 687704. CrossRefGoogle ScholarPubMed
Park, T., & Casella, G. (2008). The Bayesian lasso. Journal of the American Statistical Association, 103 (482), 681686. CrossRefGoogle Scholar
Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News, 6 711. Google Scholar
R Development Core Team (2010). R: A language and environment for statistical computing, Vienna: R Foundation for Statistical Computing. Google Scholar
Reckase, M. D. (1985). The difficulty of test items that measure more than one ability. Applied Psychological Measurement, 9 (4), 401412. CrossRefGoogle Scholar
Reckase, M. D. (2009). Multidimensional item response theory, New York, NY: Springer. CrossRefGoogle Scholar
Sun, J., Chen, Y., Liu, J., Ying, Z., & Xin, T. Latent variable selection for multidimensional item response theory models via L 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\rm 1}$$\end{document} regularization (2016). Psychometrika, 81 (4), 921939. CrossRefGoogle Scholar
Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association, 82 (398), 528540. CrossRefGoogle Scholar
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B. Methodological, 58 (1), 267288. CrossRefGoogle Scholar
Wang, H. (2012). Bayesian graphical lasso models and efficient posterior computation. Bayesian Analysis, 7 (4), 867886. CrossRefGoogle Scholar
Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: Current approaches and future directions. Psychological Methods, 12 (1), 5879. CrossRefGoogle ScholarPubMed
Yuan, M., & Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika, 94 (1), 1935. CrossRefGoogle Scholar
Zhang, S., Chen, Y., & Li, X. (2019). mirtjml: Joint maximum likelihood estimation for high-dimensional item factor analysis. Retrieved January 20, 2020, from https://cran.r-project.org/web/packages/mirtjml/index.html.Google Scholar