Hostname: page-component-5f745c7db-96s6r Total loading time: 0 Render date: 2025-01-07T05:23:01.193Z Has data issue: true hasContentIssue false

Partial Likelihood Estimation of IRT Models with Censored Lifetime Data: An Application to Mental Disorders in the ESEMeD Surveys

Published online by Cambridge University Press:  01 January 2025

Carlos G. Forero
Affiliation:
CIBER en Epidemiología y Salud Pública (CIBERESP) and Health Services Research Unit, IMIM-Institut Hospital del Mar d’Investigacions Mèdiques
Josué Almansa
Affiliation:
Health Services Research Unit, IMIM-Institut Hospital del Mar d’Investigacions Mèdiques
Núria D. Adroher
Affiliation:
CIBER en Epidemiología y Salud Pública (CIBERESP) and Health Services Research Unit, IMIM-Institut Hospital del Mar d’Investigacions Mèdiques
Jeroen K. Vermunt
Affiliation:
Tilburg University
Gemma Vilagut
Affiliation:
CIBER en Epidemiología y Salud Pública (CIBERESP) and Health Services Research Unit, IMIM-Institut Hospital del Mar d’Investigacions Mèdiques
Ron De Graaf
Affiliation:
Netherlands Institute of Mental Health and Addiction
Josep-Maria Haro
Affiliation:
Fundació Sant Joan de Déu, CIBERSAM
Jordi Alonso Caballero*
Affiliation:
CIBER en Epidemiología y Salud Pública (CIBERESP) and Health Services Research Unit, IMIM-Institut Hospital del Mar d’Investigacions Mèdiques
*
Requests for reprints should be sent to Jordi Alonso Caballero, Health Services Research Unit, IMIM-Institut Hospital del Mar d’Investigacions Mèdiques, Doctor Aiguader 88, 08003 Barcelona, Spain. E-mail: [email protected]

Abstract

Developmental studies of mental disorders based on epidemiological data are often based on cross-sectional retrospective surveys. Under such designs, observations are right-censored, causing underestimation of lifetime prevalences and correlations, and inducing bias in latent trait models on the observations. In this paper we propose a Partial Likelihood (PL) method to estimate unbiased IRT models of lifetime predisposition to develop a certain outcome. A two-step estimation procedure corrects the IRT likelihood of outcome appearance with a function depending on (a) projected outcome frequencies at the end of the risk period, and (b) outcome censoring status at the time of the observation. Simulation results showed that the PL method yielded good recovery of true frequencies and intercepts. Slopes were best estimated when events were sufficiently correlated. When PL is applied to lifetime mental health disorders (assessed in the ESEMeD project surveys), estimated univariate prevalences were, on average, 1.4 times above raw estimates, and 2.06 higher in the case of bivariate prevalences.

Type
Original Paper
Copyright
Copyright © 2013 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first two authors contributed equally in the writing of this paper.

References

Almansa, J., Vermunt, J., Forero, C.G., Alonso, J. (2013). A factor mixture model for multivariate survival data. An application to the analysis of lifetime mental disorders. Journal of the Royal Statistical Society. Series C. Applied StatisticsGoogle Scholar
Alonso, J., Angermeyer, M.C., Bernert, S., Bruffaerts, R., Brugha, T.S., Bryson, H. (2004). Prevalence of mental disorders in Europe: results from the European study of the epidemiology of mental disorders (ESEMeD) Project. Acta Psychiatrica Scandinavica, 109, 2127CrossRefGoogle Scholar
Andersen, P.K., Borgan, O., Gill, R.D., Keiding, N. (1993). Statistical models based on counting processes, New York: SpringerCrossRefGoogle Scholar
American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders (DSM-IV), (4th ed.). Washington: American Psychiatric AssociationGoogle Scholar
Besag, J.E. (1977). Efficiency of pseudo-likelihood estimation for simple Gaussian fields. Biometrika, 64, 616618CrossRefGoogle Scholar
Binder, D.A. (1992). Fitting Cox’s proportional hazards models from survey data. Biometrika, 79, 139147CrossRefGoogle Scholar
Bonnewyn, A., Bruffaerts, R., Vilagut, G., Almansa, J., Demyttenaere, K. (2007). Lifetime risk and age-of-onset of mental disorders in the Belgian general population. Social Psychiatry Psychiatric Epidemiology, 42, 522529CrossRefGoogle ScholarPubMed
Clark, L.A., Watson, D. (1991). Tripartite model of anxiety and depression: psychometric evidence and taxonomic implications. Journal of Abnormal Psychology, 100, 316336CrossRefGoogle ScholarPubMed
Cox, D.R. (1975). Partial likelihood. Biometrika, 62, 269276CrossRefGoogle Scholar
Eaton, W.W. (2006). Medical and psychiatric comorbidity over the course of life, Arlington: American Psychiatric PublishingGoogle Scholar
Forero, C.G., Maydeu-Olivares, A. (2009). Estimation of IRT graded models for rating data: limited vs. full information methods. Psychological Methods, 15, 275299CrossRefGoogle Scholar
Gong, G., Samaniego, F.J. (1981). Pseudo maximum likelihood estimation: theory and applications. The Annals of Statistics, 9, 861869CrossRefGoogle Scholar
Karam, E.G., Mneimneh, Z.N., Dimassi, H., Fayyad, J.A., Karam, A.N., Nasser, S.C., Chatterji, S., Kessler, R.C. (2008). Lifetime prevalence of mental disorders in Lebanon: first onset, treatment, and exposure to war. PLoS Medicine, 5CrossRefGoogle ScholarPubMed
Kessler, R.C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K.R. et al. (2003). The epidemiology of major depressive disorder results from the national comorbidity survey replication (NCS-R). Journal of the American Medical Association, 289, 30953105CrossRefGoogle ScholarPubMed
Kessler, R.C., Berglund, P., Demler, O., Jin, R., Merikangas, K.R., Walters, E.E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Archives of General Psychiatry, 62, 593602CrossRefGoogle ScholarPubMed
Kessler, R.C., Ustun, T.B. (2004). The World Mental Health (WMH) survey initiative version of the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI). International Journal of Methods in Psychiatric Research, 13, 93121CrossRefGoogle ScholarPubMed
Klein, J.P., Moeschberger, M.L. (2003). Survival analysis: techniques for censored and truncated data, (2nd ed.). New York: SpringerCrossRefGoogle Scholar
Kovess-Masfety, V., Alonso, J., Brugha, T.S., Angermeyer, M.C., Haro, J.M., Sevilla-Dedieu, C. (2007). Differences in lifetime use of services for mental health problems in six European countries. Psychiatric Services, 58, 213220CrossRefGoogle ScholarPubMed
Kraemer, H.C., Wilson, K.A., Hayward, C. (2006). Lifetime prevalence and comorbidity in psychiatric research. Archives of General Psychiatry, 63, 604608CrossRefGoogle ScholarPubMed
Krueger, R.F. (1999). The structure of common mental disorders. Archives of General Psychiatry, 56, 921926CrossRefGoogle ScholarPubMed
Krueger, R.F., Finger, M.S. (2001). Using item response theory to understand comorbidity among anxiety and unipolar mood disorders. Psychological Assessment, 13, 140151CrossRefGoogle ScholarPubMed
Kulich, M., Lin, D.Y. (2004). Improving the efficiency of relative-risk estimation in case-cohort studies. Journal of the American Statistical Association, 99, 832844CrossRefGoogle Scholar
Lin, D.Y. (1994). Cox regression analysis of multivariate failure time data: the marginal approach. Statistics in Medicine, 13, 22332247CrossRefGoogle ScholarPubMed
Lin, D.Y., Ying, Z. (2003). Semiparametric regression analysis of longitudinal data with informative drop-outs. Biostatistics, 4, 385398CrossRefGoogle ScholarPubMed
Moffit, T.E., Caspi, A., Taylor, A., Kokaua, J., Milne, B.J., Polanczyk, G., Poulton, R. (2010). How common are common mental disorders? Evidence that lifetime prevalence rates are doubled by prospective versus retrospective ascertainment. Psychological Medicine, 40, 899909CrossRefGoogle Scholar
Muthén, B. (1989). Tobit factor analysis. British Journal of Mathematical & Statistical Psychology, 42, 241250CrossRefGoogle Scholar
Prentice, R.L. (1986). A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika, 73, 111CrossRefGoogle Scholar
Shi, J.-Q., Lee, S.-K. (1997). A Bayesian estimation of factor score in confirmatory factor model with polytomous, censored or truncated data. Psychometrika, 62, 2950CrossRefGoogle Scholar
Skinner, C.J., Holt, D., Smith, T.M.F. (1989). Analysis of complex surveys, New York: WileyGoogle Scholar
Singer, J., Willett, J.B. (1993). It’s about time: using discrete-time survival analysis to study duration and the timing of events. Journal of Educational and Behavioral Statistics, 18, 155195Google Scholar
Streiner, D.L., Patten, S.B., Anthony, J.C., Cairney, J. (2009). Has ‘lifetime prevalence’ reached the end of its life? An examination of the concept. International Journal of Methods in Psychiatry Research, 18, 221228CrossRefGoogle ScholarPubMed
Suzuki, K. (1985). Estimation of lifetime parameters from incomplete field data. Technometrics, 27, 263272CrossRefGoogle Scholar
Vermunt, J.K. (2004). An EM algorithm for the estimation of parametric and nonparametric hierarchical nonlinear models. Statistica Neerlandica, 58, 220233CrossRefGoogle Scholar
Vermunt, J.K., & Magidson, J. (2005). Technical guide for latent GOLD 4.0: basic and advanced [Computer software]. Belmont Massachusetts: Statistical Innovations, Inc. Google Scholar
Wedel, M., ter Hofstede, F., Steenkamp, J.-B.E.M. (1998). Mixture model analysis of complex samples. Journal of Classification, 15, 225244CrossRefGoogle Scholar