Published online by Cambridge University Press: 01 January 2025
The tetrachoric correlation is a popular measure of association for binary data and estimates the correlation of an underlying normal latent vector. However, when the underlying vector is not normal, the tetrachoric correlation will be different from the underlying correlation. Since assuming underlying normality is often done on pragmatic and not substantial grounds, the estimated tetrachoric correlation may therefore be quite different from the true underlying correlation that is modeled in structural equation modeling. This motivates studying the range of latent correlations that are compatible with given binary data, when the distribution of the latent vector is partly or completely unknown. We show that nothing can be said about the latent correlations unless we know more than what can be derived from the data. We identify an interval constituting all latent correlations compatible with observed data when the marginals of the latent variables are known. Also, we quantify how partial knowledge of the dependence structure of the latent variables affect the range of compatible latent correlations. Implications for tests of underlying normality are briefly discussed.
Electronic Supplementary Information The online version supplementary material available at https://doi.org/10.1007/s11336-020-09737-y.