Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T13:25:22.936Z Has data issue: false hasContentIssue false

On a Generalization of Local Independence in Item Response Theory Based on Knowledge Space Theory

Published online by Cambridge University Press:  01 January 2025

Stefano Noventa*
Affiliation:
Universität Tübingen
Andrea Spoto
Affiliation:
University of Padova
Jürgen Heller
Affiliation:
Universität Tübingen
Augustin Kelava
Affiliation:
Universität Tübingen
*
Correspondence should be made to Stefano Noventa, Methods Center, Universität Tübingen, Tübingen, Germany. Email: [email protected]

Abstract

Knowledge space theory (KST) structures are introduced within item response theory (IRT) as a possible way to model local dependence between items. The aim of this paper is threefold: firstly, to generalize the usual characterization of local independence without introducing new parameters; secondly, to merge the information provided by the IRT and KST perspectives; and thirdly, to contribute to the literature that bridges continuous and discrete theories of assessment. In detail, connections are established between the KST simple learning model (SLM) and the IRT General Graded Response Model, and between the KST Basic Local Independence Model and IRT models in general. As a consequence, local independence is generalized to account for the existence of prerequisite relations between the items, IRT models become a subset of KST models, IRT likelihood functions can be generalized to broader families, and the issues of local dependence and dimensionality are partially disentangled. Models are discussed for both dichotomous and polytomous items and conclusions are drawn on their interpretation. Considerations on possible consequences in terms of model identifiability and estimation procedures are also provided.

Type
Original Paper
Copyright
Copyright © 2018 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, D. (1994). Knowledge structures, New York: Springer.CrossRefGoogle Scholar
Barton, M. A., Lord, F. M. (1981). An upper asymptote for the three-parameter logistic item-response model, Princeton: Educational Testing Service.CrossRefGoogle Scholar
Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37(1), 2951.CrossRefGoogle Scholar
Bradlow, E., Wainer, H., Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64(2), 153168.CrossRefGoogle Scholar
Braeken, J., Tuerlinckx, F., De Boeck, P. (2007). Copulas for residual dependencies. Psychometrika, 72(3), 393411.CrossRefGoogle Scholar
Chen, W.-H., Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22(3), 265289.CrossRefGoogle Scholar
Doignon, J.-P., Falmagne, J.-C. (1985). Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 23(2), 175196.CrossRefGoogle Scholar
Falmagne, J.-C., Doignon, J.-P. (2011). Learning spaces, Berlin: Springer.CrossRefGoogle Scholar
Falmagne, J.-C., Koppen, M., Villano, M., Doignon, J.-P., Johanneses, L. (1990). Introduction to knowledge spaces: How to build, test, and search them. Psychological Review, 97(2), 201224.CrossRefGoogle Scholar
Fischer, G. H., Molenaar, I. W. (1995). Rasch models: foundations, recent developments, and applications, New York: Springer.CrossRefGoogle Scholar
Guttman, L. (1950). The basis for scalogram analysis. In Stouffer, S. A., Guttman, L., Suchman, E. A., Lazarsfeld, P. F., Star, S. A., Clausen, J. A. (Eds), Measurement and prediction [studies in social psychology in World War II], Princeton, NJ: Princeton University Press.Google Scholar
Heller, J. (2017). Identifiability in probabilistic knowledge structures. Journal of Mathematical Psychology, 77, 4657.CrossRefGoogle Scholar
Heller, J., Stefanutti, L., Anselmi, P., Robusto, E. (2015). On the link between cognitive diagnostic models and knowledge space theory. Psychometrika, 80(4), 9951019.CrossRefGoogle ScholarPubMed
Hemker, B. T., van der Ark, L. A., Sijtsma, K. (2001). On Measurement properties of continuation ratio models. Psychometrika, 66(4), 487506.CrossRefGoogle Scholar
Holland, P. W. (1981). When are item response models consistent with observed data?. Psychometrika, 46(1), 7992.CrossRefGoogle Scholar
Ip, E. H. (2002). Locally dependent latent trait model and the Dutch identity revisited. Psychometrika, 67(3), 367386.CrossRefGoogle Scholar
Ip, E. H. (2010). Empirically indistinguishable multidimensional IRT and locally dependent unidimensional item response models. British Journal of Mathematical and Statistical Psychology, 63, 395416.CrossRefGoogle ScholarPubMed
Irtel, H. (1995). An extension of the concept of specific objectivity. Psychometrika, 60(1), 115118.CrossRefGoogle Scholar
Irtel, H. (1996). Entscheidungs- und testtheoretische Grundlagen der Psychologischen Diagnostik, Frankfurt am Main: Verlag Peter Lang.Google Scholar
Jannarone, R. J. (1986). Conjunctive item response theory kernels. Psychometrika, 51(3), 357373.CrossRefGoogle Scholar
Jannarone, R. J. (1997). Models for locally dependent responses: Conjunctive item response theory. In van der Linden, W. J., Updike, J., Hambleton, R. K. (Eds), Handbook of modern item response theory, New York: Springer 465479.CrossRefGoogle Scholar
Johnson, M. S., Sinharay, S. (2016). Bayesian estimation. In van der Linden, W. J. (Eds), Handbook of item response theory. Vol. II: Statistical tools, Boca Raton, FL: CRC Press 237257.Google Scholar
Liu, Y., Maydeu-Olivares, A. (2012). Local dependence diagnostics in IRT modeling of binary data. Educational and Psychological Measurement, 73(2), 254274.CrossRefGoogle Scholar
Loken, E., Rulison, K. L. (2010). Estimation of a 4-parameter item response theory model. The British Journal of Mathematical and Statistical Psychology, 63, 509525.CrossRefGoogle Scholar
Lord, F. M., Novik, M. R. (1968). Statistical theories of mental test scores, London: Addison-Wesley Publishing Company.Google Scholar
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149174.CrossRefGoogle Scholar
Mokken, R. J. (1971). A theory and procedure of scale analysis with applications in political research, New York: Walter de Gruyter, Mouton.CrossRefGoogle Scholar
Noventa, S., & Stefanutti, L. (2016). Some considerations on the factorization of knowledge state probabilities in knowledge structures. Manuscript submitted for publication.Google Scholar
Noventa, S., Stefanutti, L., Vidotto, G. (2014). An analysis of item response theory and Rasch models based on the most probable distribution method. Psychometrika, 79(3), 377402.CrossRefGoogle ScholarPubMed
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests, Copenaghen: Nielsen & Lydiche.Google Scholar
Rusch, A., Wille, R. (1996). Knowledge spaces and formal concept analysis. In Bock, H.-H., Polasek, W. (Eds), Data analysis and information systems, Berlin: Springer 427436.CrossRefGoogle Scholar
Rosenbaum, P. R. (1984). testing conditional independence and monotonicity assumptions of item response theory. Psychometrika, 49(3), 425435.CrossRefGoogle Scholar
Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores (psychometric monograph No. 17), Richmond, VA: Psychometric Society.Google Scholar
Samejima, F. (1972). A general model for free-response data (psychometric monograph no. 18), Richmond, VA: Psychometric Society.Google Scholar
Samejima, F. (1973). A comment of Birnbaum’s three parameter logistic model in the latent trait theory. Psychometrika, 38(2), 221233.CrossRefGoogle Scholar
Samejima, F. (1995). Acceleration model in the heterogeneous case of the general graded response model. Psychometrika, 60(4), 549572.CrossRefGoogle Scholar
Scheiblechner, H. (1995). Isotonic ordinal probabilistic models. Psychometrika, 60(2), 281304.CrossRefGoogle Scholar
Schrepp, M. (2003). A method for the analysis of hierarchical dependencies between items of a questionnaire. Methods of Psychological Research, 19, 4379.Google Scholar
Schrepp, M. (2005). About the connection between knowledge structures and latent class models. Methodology, 1(3), 92102.CrossRefGoogle Scholar
Sijtsma, K. (1998). Methodology review: Nonparametric IRT approaches to the analysis of dichotomous item scores. Applied Psychological Measurement, 22, 331.CrossRefGoogle Scholar
Spoto, A., Stefanutti, L., Vidotto, G. (2012). On the unidentifiability of a certain class of skill multi map based probabilistic knowledge structures. Journal of Mathematical Psychology, 56, 248255.CrossRefGoogle Scholar
Spoto, A., Stefanutti, L., Vidotto, G. (2013). Considerations about the identification of forward- and backward-graded knowledge structures. Journal of Mathematical Psychology, 57, 249254.CrossRefGoogle Scholar
Spoto, A., Stefanutti, L., Vidotto, G. (2016). An iterative procedure for extracting skillmaps from data. Behaviour Research Methods, 48, 729741.CrossRefGoogle ScholarPubMed
Stefanutti, L. (2006). A logistic approach to knowledge structures. Journal of Mathematical Psychology, 50, 545561.CrossRefGoogle Scholar
Stefanutti, L., Spoto, A., Vidotto, G. (2018). Detecting and explaining BLIM’s unidentifiability: Forward and backward parameter transformation groups. Journal of Mathematical Psychology, 82, 3851.CrossRefGoogle Scholar
Thissen, D., Steinberg, L. (1986). A taxonomy of item response models. Psychometrika, 51(4), 567577.CrossRefGoogle Scholar
Tutz, G. (1990). Sequential item response models with an ordered response. British Journal of Mathematical and Statistical psychology, 43, 3955.CrossRefGoogle Scholar
Tutz, G. (2016). Sequential models for ordered responses. In van der Linden, W. J. (Eds), Handbook of item response theory. Vol. I: Models, Boca Raton, FL: CRC Press 139151.Google Scholar
Ünlü, A. (2006). Estimation of careless error and lucky guess probabilities for dichotomous test items: A psychometric application of a biometric latent class model with random effects. Journal of Mathematical Psychology, 50, 309328.CrossRefGoogle Scholar
Ünlü, A. (2007). Nonparametric item response theory axioms and properties under nonlinearity and their exemplification with knowledge space theory. Journal of Mathematical Psychology, 51, 383400.CrossRefGoogle Scholar
Ünlü, A. (2011). A Note on the connection between knowledge structures and latent class models. Methodology, 7(2), 6367.CrossRefGoogle Scholar
Van der Linden, W. J., Barrett, M. D. (2016). Linking item response model parameters. Psychometrika, 81(3), 650673.CrossRefGoogle ScholarPubMed
Van leeuwe, J. F. J. (1974). Item tree analysis. Nederlands Tijdschrift voor de Psychologie, 29, 475484.Google Scholar
Verhelst, N. D., Glas, C. A. W., de Vries, H. H. (1997). A steps model to analyze partial credit. In van der Linden, W. J., Updike, J., Hambleton, R. K. (Eds), Handbook of modern item response theory, New York: Springer 123138.CrossRefGoogle Scholar
Wilson, M., Adams, R. J. (1995). Rasch models for item bundles. Psychometrika, 60(2), 181198.CrossRefGoogle Scholar
Wood, R. (1978). Fitting the Rasch model—A heady tale. British Journal of Mathematical and Statistical Psychology, 31, 2732.CrossRefGoogle Scholar
Yen, W. M. (1993). Scaling performance assessments: Strategies for managing local item independence. Journal of Educational Measurement, 30(3), 187213.CrossRefGoogle Scholar