Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T09:33:17.177Z Has data issue: false hasContentIssue false

Objective Bayesian Comparison of Constrained Analysis of Variance Models

Published online by Cambridge University Press:  01 January 2025

Guido Consonni*
Affiliation:
Università Cattolica del Sacro Cuore
Roberta Paroli
Affiliation:
Università Cattolica del Sacro Cuore
*
Correspondence should be made to Guido Consonni, Università Cattolica del Sacro Cuore, Milan, Italy. Email: [email protected]; https://sites.google.com/site/consonnibayes/home

Abstract

In the social sciences we are often interested in comparing models specified by parametric equality or inequality constraints. For instance, when examining three group means {μ1,μ2,μ3}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\{ \mu _1, \mu _2, \mu _3\}$$\end{document} through an analysis of variance (ANOVA), a model may specify that μ1<μ2<μ3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mu _1<\mu _2<\mu _3$$\end{document}, while another one may state that {μ1=μ3}<μ2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\{ \mu _1=\mu _3\} <\mu _2$$\end{document}, and finally a third model may instead suggest that all means are unrestricted. This is a challenging problem, because it involves a combination of nonnested models, as well as nested models having the same dimension. We adopt an objective Bayesian approach, requiring no prior specification from the user, and derive the posterior probability of each model under consideration. Our method is based on the intrinsic prior methodology, suitably modified to accommodate equality and inequality constraints. Focussing on normal ANOVA models, a comparative assessment is carried out through simulation studies. We also present an application to real data collected in a psychological experiment.

Type
Original paper
Copyright
Copyright © 2016 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic supplementary material The online version of this article (doi:10.1007/s11336-016-9516-y) contains supplementary material, which is available to authorized users.

References

Altomare, D., Consonni, G., La Rocca, L.. (2013). Objective Bayesian search of Gaussian directed acyclic graphical models for ordered variables with non-local priors. Biometrics, 69, 478487. doi:10.1111/biom.12018.CrossRefGoogle ScholarPubMed
Barlow, R. E., Bartholomew, D. J., Bremner, J. M., & Brunk, H. D., (1972). Statistical inference under order restrictions. The theory and application of isotonic regression. London/New York/Sydney: Wiley.Google Scholar
Bartolucci, F., Scaccia, L., Farcomeni, A.. (2012). Bayesian inference through encompassing priors and importance sampling for a class of marginal models for categorical data. Computational Statistics & Data Analysis, 56, 40674080. doi:10.1016/j.csda.2012.04.006.CrossRefGoogle Scholar
Baskurt, Z., Evans, M.. (2013). Hypothesis assessment and inequalities for Bayes factors and relative belief ratios. Bayesian Analysis, 8, 569590. doi:10.1214/13-BA824.CrossRefGoogle Scholar
Berger, J.. (2006). The case for objective Bayesian analysis. Bayesian Analysis, 1, 385402. doi:10.1214/06-BA115.CrossRefGoogle Scholar
Berger, J. O., & Mortera, J.. (1999). Default Bayes factors for nonnested hypothesis testing. Journal of the American Statistical Association, 94, 542554. doi:10.1080/01621459.1999.10474149.CrossRefGoogle Scholar
Berger, J. O., & Pericchi, L.. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91, 109122. doi:10.1080/01621459.1996.10476668.CrossRefGoogle Scholar
Carvalho, C. M., & Scott, J. G.. (2009). Objective Bayesian model selection in Gaussian graphical models. Biometrika, 96, 497512. doi:10.1093/biomet/asp017.CrossRefGoogle Scholar
Casella, G., Girón, F. J., Martínez, M. L., & Moreno, E.. (2009). Consistency of Bayesian procedures for variable selection. Annals of Statistics, 37, 12071228. doi:10.1214/08-AOS606.CrossRefGoogle Scholar
Casella, G., Moreno, E.. (2006). Objective Bayesian variable selection. Journal of the American Statistical Association, 101, 157167. doi:10.1198/016214505000000646.CrossRefGoogle Scholar
Casella, G., Moreno, E.. (2009). Assessing robustness of intrinsic tests of independence in two-way contingency tables. Journal of the American Statistical Association, 104, 12611271. doi:10.1198/jasa.2009.tm08106.CrossRefGoogle Scholar
Chib, S.. (1995). Marginal likelihood from the Gibbs output. Journal of the American Statistical Association, 90, 13131321. doi:10.1080/01621459.1995.10476635.CrossRefGoogle Scholar
Chib, S., Jeliazkov, I.. (2001). Marginal likelihood from the Metropolis-Hastings output. Journal of the American Statistical Association, 96, 270281. doi:10.1198/016214501750332848.CrossRefGoogle Scholar
Consonni, G., Moreno, E., Venturini, S.. (2011). Testing Hardy–Weinberg equilibrium: An objective Bayesian analysis. Statistics in Medicine, 30, 6274. doi:10.1002/sim.4084.CrossRefGoogle ScholarPubMed
Consonni, G., La Rocca, L.. (2008). Tests based on intrinsic priors for the equality of two correlated proportions. Journal of the American Statistical Association, 103, 12601269. doi:10.1198/016214508000000436.CrossRefGoogle Scholar
Consonni, G., Veronese, P.. (2008). Compatibility of prior specifications across linear models. Statistical Science, 23, 332353. doi:10.1214/08-STS258.CrossRefGoogle Scholar
Dmochowski, J. (1996). Intrinsic priors via Kullback–Leibler geometry. In Bayesian statistics, 5 (Alicante, 1994) (pp. 543–549). New York: Oxford Science Publications/Oxford University Press..Google Scholar
Girón, F. J., Martínez, M. L., Moreno, E., & Torres, F. (2006). Objective testing procedures in linear models: Calibration of the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-values. Scandinavian Journal of Statistics, 33, 765–784..Google Scholar
Hoijtink, H.. (2013). Objective Bayes factors for inequality constrained hypotheses. International Statistical Review, 81, 207229. doi:10.1111/insr.12010.CrossRefGoogle Scholar
Hoijtink, H., Klugkist, I., Boelen, P. A., (2008). Bayesian evaluation of informative hypotheses. New York: Springerdoi:10.1007/978-0-387-09612-4.CrossRefGoogle Scholar
Jeffreys, H. (1961). Theory of Probability (3rd ed.). Oxford University Press. Corrected impression (1966)..Google Scholar
Johnson, V. E.. (2013). Revised standards for statistical evidence. Proceedings of the National Academy of Sciences, 110, 1931319317. doi:10.1073/pnas.1313476110.CrossRefGoogle ScholarPubMed
Kass, R. E., & Raftery, A. E.. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773795. doi:10.1080/01621459.1995.10476572.CrossRefGoogle Scholar
Klugkist, I., Hoijtink, H.. (2007). The Bayes factor for inequality and about equality constrained models. Computational Statistics & Data Analysis, 51, 63676379. doi:10.1016/j.csda.2007.01.024.CrossRefGoogle Scholar
Klugkist, I., Laudy, O., Hoijtink, H.. (2005). Inequality constrained analysis of variance: A Bayesian approach. Psychological Methods, 10, 477493. doi:10.1037/1082-989X.10.4.477.CrossRefGoogle ScholarPubMed
Laudy, O., Hoijtink, H.. (2007). Bayesian methods for the analysis of inequality constrained contingency tables. Statistical Methods in Medical Research, 16, 123138. doi:10.1177/0962280206071925.CrossRefGoogle ScholarPubMed
Leon-Novelo, L., Moreno, E., Casella, G.. (2012). Objective Bayes model selection in probit models. Statistics in Medicine, 31, 353365. doi:10.1002/sim.4406.CrossRefGoogle ScholarPubMed
Liang, F., Paulo, R., Molina, G., Clyde, M. A., & Berger, J. O.. (2008). Mixtures of g priors for Bayesian variable selection. Journal of the American Statistical Association, 103, 410423. doi:10.1198/016214507000001337.CrossRefGoogle Scholar
Lucas, J. W.. (2003). Status processes and the institutionalization of women as leaders. American Sociological Review, 68, 464480. doi:10.2307/1519733.CrossRefGoogle Scholar
Moreno, E.Dodge, Y.. (1997). Bayes factors for intrinsic and fractional priors in nested models. Bayesian robustness. Statistical procedures and related topics. Hayward: Institute of Mathematical Statistics 257270. doi:10.1214/lnms/1215454142.CrossRefGoogle Scholar
Moreno, E.. (2005). Objective Bayesian analysis for one-sided testing. Test, 14, 181198. doi:10.1007/BF02595402.CrossRefGoogle Scholar
Moreno, E., Girón, F. J., & Casella, G.. (2010). Consistency of objective Bayes factors as the model dimension grows. Annals of Statistics, 38, 19371952. doi:10.1214/09-AOS754.CrossRefGoogle Scholar
Moreno, E., Giròn, F., Torres, F.. (2003). Intrinsic priors for hypothesis testing in normal regression models. Revista de la Real Academia de Ciencias Series A, 97, 5361.Google Scholar
Morey, R. D., Rouder, J. N., Pratte, M. S., & Speckman, P. L.. (2011). Using MCMC chain outputs to efficiently estimate Bayes factors. Journal of Mathematical Psychology, 55, 368378. doi:10.1016/j.jmp.2011.06.004.CrossRefGoogle Scholar
Mulder, J.. (2014). Bayes factors for testing inequality constrained hypotheses: Issues with prior specification. British Journal of Mathematical and Statistical Psychology, 67, 153171. doi:10.1111/bmsp.12013.CrossRefGoogle ScholarPubMed
Mulder, J.. (2014). Bayes factors for testing order-constrained hypotheses on correlations. Journal of Mathematical Psychology, 72, 104115. doi:10.1016/j.jmp.2014.09.004.CrossRefGoogle Scholar
Mulder, J.. (2014). Prior adjusted default Bayes factors for testing (in)equality constrained hypotheses. Computational Statistics and Data Analysis, 71, 448463. doi:10.1016/j.csda.2013.07.017.CrossRefGoogle Scholar
Mulder, J.. (2009). Bayesian model selection of informative hypotheses for repeated measurements. Journal of Mathematical Psychology, 53, 530546. doi:10.1016/j.jmp.2009.09.003.CrossRefGoogle Scholar
Mulder, J., Hoijtink, H., Klugkist, I.. (2010). Equality and inequality constrained multivariate linear models: Objective model selection using constrained posterior priors. Journal of Statistical Planning and Inference, 140, 887906. doi:10.1016/j.jspi.2009.09.022.CrossRefGoogle Scholar
O’Hagan, A.. (1995). Fractional Bayes factors for model comparison. Journal of the Royal Statistical Society, Series B (Methodological), 57, 99138.CrossRefGoogle Scholar
O’Hagan, A., Forster, J.Kendall’s advanced theory of statistics, Vol. 2b: Bayesian inference 2004 2London: Arnold.Google Scholar
Pérez, J. M., & Berger, J. O.. (2002). Expected posterior prior distributions for model selection. Biometrika, 89, 491512. doi:10.1093/biomet/89.3.491.CrossRefGoogle Scholar
Pericchi, L. R.,Dey, D., Rao, C.. (2005). Model selection and hypothesis testing based on objective probabilities and Bayes factors. Bayesian thinking modeling and computation, vol. 25 of handbook of statistics. Amsterdam: Elsevier 115149. doi:10.1016/S0169-7161(05)25004-6.CrossRefGoogle Scholar
Pericchi, L. R., Liu, G., & Núñez Torres, D. (2008). Objective Bayes factors for informed hypotheses: “Completing” and “splitting” the Bayes factors. In H. Hoijtink, I. Klugkist, & P. A. Boelen (Eds.), Bayesian evaluation of informative hypotheses (pp. 131–154). New York: Springer..Google Scholar
Raiffa, H., Schlaifer, R.Applied statistical decision theory 1961 Boston: Clinton Press Inc..Google Scholar
Robertson, T., Wright, F., Dykstra, R.Order restricted statistical inference 1988 Chichester: Wiley.Google Scholar
Scott, J. G., & Berger, J. O.. (2010). Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. The Annals of Statistics, 38, 25872619. doi:10.1214/10-AOS792.CrossRefGoogle Scholar
Sellke, T., Bayarri, J. M., & Berger, J. O.. (2001). Calibration of rho values for testing precise null hypotheses. The American Statistician, 55, 6271. doi:10.1198/000313001300339950.CrossRefGoogle Scholar
Silvapulle, M., Sen, P.Constrained statistical inference: Order, inequality, and shape constraints 2005 London/New York/Sydney: Wiley.Google Scholar
Stern, H. S.. (2005). Model inference or model selection: Discussion of Klugkist, Laudy, and Hoijtink (2005). Psychological Methods, 10, 494499. doi:10.1037/1082-989X.10.4.494.CrossRefGoogle ScholarPubMed
Wagenmakers, E-J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14, 779804. doi:10.3758/BF03194105.CrossRefGoogle Scholar
Wesel, F. V., & Hoijtink, H., Klugkist, I.. (2011). Choosing priors for constrained analysis of variance: Methods based on training data. Scandinavian Journal of Statistics, 38, 666690. doi:10.1111/j.1467-9469.2010.00719.x.CrossRefGoogle Scholar
Wetzels, R., Grasman, R. P., & Wagenmakers, E-J. (2010). An encompassing prior generalization of the Savage–Dickey density ratio. Computational Statistics & Data Analysis, 54, 20942102. doi:10.1016/j.csda.2010.03.016.CrossRefGoogle Scholar
Supplementary material: File

Consonni and Paroli supplementary material

Consonni and Paroli supplementary material 1
Download Consonni and Paroli supplementary material(File)
File 170.4 KB
Supplementary material: File

Consonni and Paroli supplementary material

Consonni and Paroli supplementary material 2
Download Consonni and Paroli supplementary material(File)
File 187.7 KB