Published online by Cambridge University Press: 01 January 2025
A multivariate reduced-rank growth curve model is proposed that extends the univariate reducedrank growth curve model to the multivariate case, in which several response variables are measured over multiple time points. The proposed model allows us to investigate the relationships among a number of response variables in a more parsimonious way than the traditional growth curve model. In addition, the method is more flexible than the traditional growth curve model. For example, response variables do not have to be measured at the same time points, nor the same number of time points. It is also possible to apply various kinds of basis function matrices with different ranks across response variables. It is not necessary to specify an entire set of basis functions in advance. Examples are given for illustration.
The work reported in this paper was supported by Grant A6394 from the Natural Sciences and Engineering Research Council of Canada to the second author. We thank Jennifer Stephan for her helpful comments on an earlier version of this paper. We also thank Patrick Curran and Terry Duncan for kindly letting us use the NLSY and substance use data, respectively. The substance use data were provided by Grant DA09548 from the National Institute on Drug Abuse.