Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T09:44:09.720Z Has data issue: false hasContentIssue false

Models for Ordinal Hierarchical Classes Analysis

Published online by Cambridge University Press:  01 January 2025

Iwin Leenen
Affiliation:
Katholieke Universiteit Leuven
Iven Van Mechelen*
Affiliation:
Katholieke Universiteit Leuven
Paul De Boeck
Affiliation:
Katholieke Universiteit Leuven
*
Requests for reprints should be sent to Iven Van Mechelen, Department of Psychology, University of Leuven, Tiensestraat 102, B-3000 Leuven, BELGIUM. E-Mail: [email protected]

Abstract

This paper proposes an ordinal generalization of the hierarchical classes model originally proposed by De Boeck and Rosenberg (1998). Any hierarchical classes model implies a decomposition of a two-way two-mode binary array M into two component matrices, called bundle matrices, which represent the association relation and the set-theoretical relations among the elements of both modes in M. Whereas the original model restricts the bundle matrices to be binary, the ordinal hierarchical classes model assumes that the bundles are ordinal variables with a prespecified number of values. This generalization results in a classification model with classes ordered along ordinal dimensions. The ordinal hierarchical classes model is shown to subsume Coombs and Kao's (1955) model for nonmetric factor analysis. An algorithm is described to fit the model to a given data set and is subsequently evaluated in an extensive simulation study. An application of the model to student housing data is discussed.

Type
Articles
Copyright
Copyright © 2001 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carroll, J.D., & Chaturvedi, A. (1995). A general approach to clustering and multidimensional scaling of two-way, three-way, or higher-way data. In Luce, R.D., D'Zmura, M., Hoffman, D., Iverson, G.J., & Romney, A.K. (Eds.), Geometric representations of perceptual phenomena (pp. 295318). Mahwah, NJ: Erlbaum.Google Scholar
Chaturvedi, A., & Carroll, J.D. (1994). An alternating combinatorial optimization approach to fitting the INDCLUS and generalized INDCLUS models. Journal of Classification, 11, 155170.CrossRefGoogle Scholar
Coombs, C.H. (1964). A theory of data. New York, NY: Wiley.Google Scholar
Coombs, C.H., & Kao, R.C. (1955). Nonmetric factor analysis. Ann Arbor, MI: University of Michigan Press.Google Scholar
De Boeck, P., & Rosenberg, S. (1988). Hierarchical classes: Model and data analysis. Psychometrika, 53, 361381.CrossRefGoogle Scholar
Doignon, J.-P., & Falmagne, J.-C. (1984). Matching relations and the dimensional structure of social choices. Mathematical Social Sciences, 7, 211229.CrossRefGoogle Scholar
Doignon, J.-P., Ducamp, A., & Falmagne, J.-C. (1984). On realizable biorders and the biorder dimension of a relation. Journal of Mathematical Psychology, 28, 73109.CrossRefGoogle Scholar
Falmagne, J.-C., Koppen, M., Vilano, M., Doignon, J.-P., & Johannesen, L. (1990). Introduction to knowledge spaces: How to build, test and search them. Psychological Review, 97, 201224.CrossRefGoogle Scholar
Guttman, L. (1944). A basis for scaling qualitative data. Americal Sociological Review, 9, 139150.CrossRefGoogle Scholar
Haggard, E.A. (1958). Intraclass correlation and the analysis of variance. New York, NY: Dryden.Google Scholar
Hartigan, J.A. (1975). Clustering algorithms. New York, NY: Wiley.Google Scholar
Hays, W.L. (1994). Statistics 5th ed., New York, NY: Harcourt Brace.Google Scholar
Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193218.CrossRefGoogle Scholar
Kirk, R.E. (1982). Experimental design: Procedures for the behavioral sciences 2nd ed., Belmont, CA: Brooks/Cole.Google Scholar
Koppen, M.G.M. (1987). On finding the bidimension of a relation. Journal of Mathematical Psychology, 31, 155178.CrossRefGoogle Scholar
Leenen, I., & Van Mechelen, I. (1998). A branch-and-bound algorithm for Boolean regression. In Balderjahn, I., Mathar, R., & Schader, M. (Eds.), Data highways and information flooding, a challenge for classification and data analysis (pp. 164171). Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
Leenen, I., & Van Mechelen, I. (2000). A conjunctive parallelogram model for pick any/n data. Submitted for publication.Google Scholar
Leenen, I., & Van Mechelen, I. (2001). An evaluation of two algorithms for hierarchical classes analysis. Journal of Classification, 18, 5780.CrossRefGoogle Scholar
Leenen, I., Van Mechelen, I., & De Boeck, P. (1999). A generic disjunctive/conjunctive decomposition model forn-ary relations. Journal of Mathematical Psychology, 43, 102122.CrossRefGoogle ScholarPubMed
Leenen, I., Van Mechelen, I., De Boeck, P., & Rosenberg, S. (1999). INDCLAS: A three-way hierarchical classes model. Psychometrika, 64, 924.CrossRefGoogle Scholar
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Le Cam, L.M., & Neyman, J. (Eds.), Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (pp. 281297). Berkeley: University of California Press.Google Scholar
Maris, E. (1995). Psychometric latent response models. Psychometrika, 60, 523547.CrossRefGoogle Scholar
Maris, E., De Boeck, P., & Van Mechelen, I. (1996). Probability matrix decomposition models. Psychometrika, 61, 729.CrossRefGoogle Scholar
Mickey, M.R., Mundle, P., & Engelman, L. (1983). Boolean factor analysis. In Dixon, W.J. (Eds.), BMDP statistical software (pp. 538545). Berkeley: University of California Press.Google Scholar
van Leeuwe, J.F.J., & Roskam, E.E. (1991). The conjunctive item response model: A probabilistic extension of the Coombs and Kao model. Methodika, 5, 1432.Google Scholar
Van Mechelen, I., & Van Damme, G. (1994). A latent criteria model for choice data. Acta Psychologia, 87, 8594.CrossRefGoogle Scholar
Van Mechelen, I., De Boeck, P., & Rosenberg, S. (1995). The conjunctive model of hierarchical classes. Psychometrika, 60, 505521.CrossRefGoogle Scholar