Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T15:36:22.089Z Has data issue: false hasContentIssue false

Modelling Trends in Ordered Correspondence Analysis Using Orthogonal Polynomials

Published online by Cambridge University Press:  01 January 2025

Rosaria Lombardo*
Affiliation:
Second University of Naples
Eric J. Beh
Affiliation:
University of Newcastle
Pieter M. Kroonenberg
Affiliation:
Leiden University
*
Correspondence should be made to Rosaria Lombardo, Economics Department, Second University of Naples, Corso Gran Priorato di Malta, 81043 Capua, CE Italy. Email: [email protected]

Abstract

The core of the paper consists of the treatment of two special decompositions for correspondence analysis of two-way ordered contingency tables: the bivariate moment decomposition and the hybrid decomposition, both using orthogonal polynomials rather than the commonly used singular vectors. To this end, we will detail and explain the basic characteristics of a particular set of orthogonal polynomials, called Emerson polynomials. It is shown that such polynomials, when used as bases for the row and/or column spaces, can enhance the interpretations via linear, quadratic and higher-order moments of the ordered categories. To aid such interpretations, we propose a new type of graphical display—the polynomial biplot.

Type
Article
Copyright
Copyright © 2015 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agresti, A. (1996). An introduction to categorical data analysis, New York: WileyGoogle Scholar
Agresti, A. 2010. Analysis of ordinal categorical data, (2nd ed.). New York: WileyCrossRefGoogle Scholar
Beh, E.J. (1997). Simple correspondence analysis of ordinal cross-classifications using orthogonal polynomials. Biometrical Journal, 39, 589613CrossRefGoogle Scholar
Beh, E.J. (1998). A comparative study of scores for correspondence analysis with ordered categories. Biometrical Journal, 40, 4134293.0.CO;2-V>CrossRefGoogle Scholar
Beh, E.J. (2001). Partitioning Pearson’s chi-squared statistic for singly ordered two-way contingency tables. The Australian and New Zealand Journal of Statistics, 43, 327333CrossRefGoogle Scholar
Beh, E.J., Davy, P.J. (1998). Partitioning Pearson’s chi-squared statistic for a completely ordered three-way contingency table. The Australian and New Zealand Journal of Statistics, 40, 465477CrossRefGoogle Scholar
Beh, E.J., Lombardo, R. (2012). A genealogy of correspondence analysis. The Australian and New Zealand Journal of Statistics, 54, 137168CrossRefGoogle Scholar
Beh, E.J., Lombardo, R. (2014). Correspondence analysis: Theory, practice and new methods, Chichester: WileyCrossRefGoogle Scholar
Beh, E.J., Simonetti, B., D’Ambra, L. (2007). Partitioning a non-symmetric measure of association for three-way contingency tables. Journal of Multivariate Analysis, 98, 13911411CrossRefGoogle Scholar
Best, D.J., Rayner, J.C.W. (1996). Nonparametric analysis for doubly ordered two-way contingency tables. Biometrics, 52, 11531156CrossRefGoogle Scholar
Böckenholt, U., Böckenholt, I. (1990). Canonical analysis of contingency tables with linear constraints. Psychometrika, 55, 633–69CrossRefGoogle Scholar
Böckenholt, U., Takane, Y. (1990). Linear constraints in correspondence analysis. In Greenacre, M., Blasius, J. (Eds.), Correspondence analysis in the social science. Recent developments and applications (pp. 112127), Italy: Academic pressGoogle Scholar
Corbellini, D., Riani, M., Donatini, A. (2008). Multivariate data analysis techniques to detect early warnings of elderly frailty. Statistica Applicata, 20, 159178Google Scholar
Cressie, N., Read, T.R.C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society (Series B), 46, 440464CrossRefGoogle Scholar
D’Ambra, L., Beh, E.J., Amenta, P. (2005). CATANOVA for two-way contingency tables with ordinal variables using orthogonal polynomials. Communication in Statistics, 34, 17551769CrossRefGoogle Scholar
D’Ambra, L., Lauro, N.C. (1989). Non-symmetrical correspondence analysis for three-way contingency tables. In Coppi, R., Bolasco, S. (Eds.), Multiway data analysis (pp. 301315), Amsterdam: North-HollandGoogle Scholar
D’Ambra, L., Lombardo, R., & Amenta, P. (2002). Non symmetric correspondence analysis for ordered two-way contingency table. In Atti della XLI Riunione Scientifica della Società Italiana di Statistica [Proceedings of the XLI Scientific Meeting of the Italian Statistical Society] (pp. 191–201). Milan, Italy: University of Milano Bicocca.Google Scholar
Dieudonné, J. (1953). On biorthogonal systems. Michigan Mathematical Journal, 2(1), 720CrossRefGoogle Scholar
Emerson, P.L. (1968). Numerical construction of orthogonal polynomials from a general recurrence formula. Biometrics, 24, 696701CrossRefGoogle Scholar
Gifi, A. (1990). Non-linear multivariate analysis, Chichester: WileyGoogle Scholar
Goodman, L.A., Kruskal, W.H. (1954). Measures of association for cross classifications. Journal of the American Statistical Association, 49, 732764Google Scholar
Greenacre, M. (1984). Theory and application of correspondence analysis, London: Academic PressGoogle Scholar
Greenacre, M. 2007. Correspondence analysis in practice, (2nd ed.). Boca Raton, FL: Chapman & Hall/CRCCrossRefGoogle Scholar
Hudson, D.J. (1969). Corrections: Numerical construction of orthogonal polynomials from a general recurrence relation. Biometrics, 25, 778Google Scholar
Israëls, A. (1987). Eigenvalue techniques for qualitative data, Leiden: DSWO PressGoogle Scholar
Kroonenberg, P.M., Lombardo, R. (1999). Nonsymmetric correspondence analysis: A tool for analysing contingency tables with a dependence structure. Multivariate Behavioral Research Journal, 34, 367397CrossRefGoogle Scholar
Lauro, N.C., D’Ambra, L. (1984). L’Analyse non symmétrique des correspondances. In Diday, E. (Ed.), Data analysis and informatics III (pp. 433446), Amsterdam: ElsevierGoogle Scholar
Lebart, L., Morineau, A., Warwick, K.M. (1984). Multivariate descriptive statistical analysis, New York: WileyGoogle Scholar
Light, R.J., Margolin, B.H. (1971). An analysis of variance for categorical data. Journal of the American Statistical Association, 66, 534544CrossRefGoogle Scholar
Lombardo, R., Beh, E.J. (2010). Simple and multiple correspondence analysis using orthogonal polynomials. Journal of Applied Statistics, 37, 21012116CrossRefGoogle Scholar
Lombardo, R., Beh, E.J., D’Ambra, L. (2007). Non-symmetric correspondence analysis with ordinal variables. Computational Statistics and Data Analysis, 52, 566577CrossRefGoogle Scholar
Lombardo, R., Beh, E.J., D’Ambra, A. (2011). Studying the dependence between ordinal-nominal categorical variables via orthogonal polynomials. Journal of Applied Statistics, 38, 21192132CrossRefGoogle Scholar
Lombardo, R., Meulman, J.J. (2010). Multiple correspondence analysis via polynomial transformations of ordered categorical variables. Journal of Classification, 27, 191210CrossRefGoogle Scholar
Manté, C., Bernard, G., Bonhomme, P., Nerini, D. (2013). Application of ordinal correspondence analysis for submerged aquatic vegetation monitoring. Journal of Applied Statistics, 40, 16191638CrossRefGoogle Scholar
Meulman, J.J., Van der Kooij, A.J., Heiser, W.J.Kaplan, D. (2004). Principal component analysis with nonlinear optimal scaling transformations for ordinal and nominal data. Handbook of quantitative methods in the social sciences, Newbury Park, CA: SageGoogle Scholar
Nair, V. (1986). Testing an industrial reduction method with ordered categorical data. Technometrics, 28, 283311CrossRefGoogle Scholar
Nishisato, S. (1980). Analysis of categorical data: Dual scaling and its applications, Toronto: University of Toronto PressCrossRefGoogle Scholar
Nishisato, S. (2007). Multidimensional nonlinear descriptive analysis, Boca Raton, FL: Chapman & Hall/CRCGoogle Scholar
Nishisato, S., Arri, P.S. (1975). Non-linear programming approach to optimal scaling of partially ordered categories. Psychometrika, 40, 525547CrossRefGoogle Scholar
Rayner, J.C.W., Beh, E.J. (2009). Towards a better understanding of correlation. Statistica Neerlandica, 63, 324333CrossRefGoogle Scholar
Robson, D.S. (1959). A simple method for constructing orthogonal polynomials when the independent variable is unequally spaced. Biometrics, 15, 187191CrossRefGoogle Scholar
Takane, Y., Jung, S. (2009). Regularized nonsymmetric correspondence analysis. Computational Statistics and Data Analysis, 53(8), 31593170CrossRefGoogle Scholar
Takane, Y., Yanai, H., Mayekawa, S. (1991). Relationships among several methods of linearly constrained correspondence analysis. Psychometrika, 56, 667684CrossRefGoogle Scholar
Ter Braak, C.J.F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 11671179CrossRefGoogle Scholar