Hostname: page-component-599cfd5f84-v8j7l Total loading time: 0 Render date: 2025-01-07T07:02:14.013Z Has data issue: false hasContentIssue false

M.J. Brusco and S. Stahl (2005). Branch-and-bound applications in combinatorial data analysis. New York: Springer. xii+221 pp. US$69.95. ISBN 0387250379.

Review products

M.J. Brusco and S. Stahl (2005). Branch-and-bound applications in combinatorial data analysis. New York: Springer. xii+221 pp. US$69.95. ISBN 0387250379.

Published online by Cambridge University Press:  01 January 2025

Hans-Friedrich Köhn*
Affiliation:
University of Illinois, Urbana-Champaign

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Review
Copyright
Copyright © 2006 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., & Schrijver, A. (1998). Combinatorial optimization. New York: Wiley.Google Scholar
Defays, D. (1978). A short note on a method of seriation. British Journal of Mathematical and Statistical Psychology, 3, 4953.CrossRefGoogle Scholar
De Leeuw, J., & Heiser, W. (1977). Convergence of correction-matrix algorithms for multidimensional scaling. In Lingoes, J.C., Roskam, E.E., & Borg, I. (Eds.), Geometric representations of relational data (pp. 735752). Ann Arbor, MI: Mathesis Press.Google Scholar
Hubert, L.J., & Arabie, P. (1986). Unidimensional scaling and combinatorial optimization. In de Leeuw, J., Meulman, J., Heiser, W., & Critchley, F. (Eds.), Multidimensional data analysis (pp. 181196). Leiden, The Netherlands: DSWO Press.Google Scholar
Hubert, L.J., & Arabie, P. (1988). Relying on necessary conditions for optimization: Unidimensional scaling and some extensions. In Bock, H.H. (Eds.), Classification and related methods of data analysis (pp. 463472). Amsterdam: Elsevier.Google Scholar
Hubert, L.J., Arabie, P., & Meulman, J. (2001). Combinatorial data analysis: Optimization by dynamic programming. Philadelphia: SIAM.CrossRefGoogle Scholar
Hubert, L.J., & Baker, F.B. (1978). Applications of combinatorial programming to data analysis: The travelling salesman and related problems. Psychometrika, 43, 8191.CrossRefGoogle Scholar
Nemhauser, G.L., & Wolsey, L.A. (1998). Integer and combinatorial optimization. New York: Wiley.Google Scholar
Papadimitriou, C.H., & Steiglitz, K. (1998). Combinatorial optimization: Algorithms and complexity. Mineola, New York: Dover.Google Scholar
Parker, G.R., & Rardin, R.L. (1988). Discrete optimization. Boston: Academic Press.Google Scholar
Ramsay, J. (2004). Combinatorial data analysis: Optimization by dynamic programming. Psychometrika, 69, 499. Review: L. Hubert, P. Arabie, & J. Meulman (2001)CrossRefGoogle Scholar
Schrijver, A. (2003). Combinatorial optimization. Berlin: Springer.Google Scholar
Van Os, B.J. (2000). Dynamic programming for partitioning in multivariate data analysis, Leiden University (Veenendaal: Universal Press).Google Scholar