Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T14:21:55.978Z Has data issue: false hasContentIssue false

Minimizing the Number of Observations: A Generalization of the Spearman-Brown Formula

Published online by Cambridge University Press:  01 January 2025

P. F. Sanders*
Affiliation:
National Institute for Educational Measurement (CITO)
T. J. J. M. Theunissen
Affiliation:
National Institute for Educational Measurement (CITO)
S. M. Baas
Affiliation:
Twente University
*
Requests for reprints should be sent to P. F. Sanders, Cito PO Box 1034, 6801 MG Arnhem, THE NETHERLANDS.

Abstract

A new method for determining the minimum number of observations per subject needed to achieve a specific generalizability coefficient is presented. This method, which consists of a branch-and-bound algorithm, allows for the employment of constraints specified by the investigator.

Type
Original Paper
Copyright
Copyright © 1989 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brennan, R. L. (1983). Elements of generalizability theory, Iowa City: ACT.Google Scholar
Cardinet, J., & Allal, L. (1983). Estimation of generalizability parameters. In Fyans, L. J. (Eds.), Generalizability theory: Inferences and practical applications (pp. 1748). San Francisco: Jossey-Bass.Google Scholar
Cardinet, J., & Tourneur, Y. (1985). Assurer la mesure [Adequate Measurement], Bern: Peter Lang.Google Scholar
Crick, J. E., & Brennan, R. L. (1982). GENOVA: A generalized analysis of variance system (FORTRAN IV computer program and manual), Iowa City: ACT.Google Scholar
Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972). The dependability of behavioral measurements, New York: Wiley.Google Scholar
Papadimitriou, Ch. H., & Steiglitz, K. (1982). Combinatorial optimization: Algorithms and complexity, Englewood Cliffs: Prentice-Hall.Google Scholar
Salkin, H. M. (1975). Integer programming, Reading, MA: Addison-Wesley.Google Scholar
Theunissen, T. J. J. M. (1985). Binary programming and test design. Psychometrika, 50, 411420.CrossRefGoogle Scholar
van der Linden, W. J., & Boekkooi-Timminga, E. (1989). A maximim model for test design with practical constraints. Psychometrika, 54, 237247.CrossRefGoogle Scholar
Woodward, J. A., & Joe, G. W. (1973). Maximizing the coefficient of generalizability in multi-facet decision studies. Psychometrika, 38, 173181.CrossRefGoogle Scholar