Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-21T21:51:04.377Z Has data issue: false hasContentIssue false

Measuring Growth in a Longitudinal Large-Scale Assessment with a General Latent Variable Model

Published online by Cambridge University Press:  01 January 2025

Matthias von Davier*
Affiliation:
ETS
Xueli Xu
Affiliation:
ETS
Claus H. Carstensen
Affiliation:
Bamberg University
*
Requests for reprints should be sent to Matthias von Davier, ETS, Princeton, NJ, USA. E-mail: [email protected]

Abstract

The aim of the research presented here is the use of extensions of longitudinal item response theory (IRT) models in the analysis and comparison of group-specific growth in large-scale assessments of educational outcomes.

A general discrete latent variable model was used to specify and compare two types of multidimensional item-response-theory (MIRT) models for longitudinal data: (a) a model that handles repeated measurements as multiple, correlated variables over time and (b) a model that assumes one common variable over time and additional variables that quantify the change. Using extensions of these MIRT models, we approach the issue of modeling and comparing group-specific growth in observed and unobserved subpopulations. The analyses presented in this paper aim at answering the question whether academic growth is homogeneous across types of schools defined by academic demands and curricular differences. In order to facilitate answering this research question, (a) a model with a single two-dimensional ability distribution was compared to (b) a model assuming multiple populations with potentially different two-dimensional ability distributions based on type of school and to (c) a model that assumes that the observations are sampled from a discrete mixture of (unobserved) populations, allowing for differences across schools with respect to mixing proportions. For this purpose, we specified a hierarchical-mixture distribution variant of the two MIRT models. The latter model, (c), is a growth-mixture MIRT model that allows for variation of the mixing proportions across clusters in a hierarchically organized sample. We applied the proposed models to the PISA-I-Plus data for assessing learning and change across multiple subpopulations. The results of this study support the hypothesis of differential growth.

Type
Original Paper
Copyright
Copyright © 2011 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Any opinions expressed in this paper are those of the author(s) and not necessarily of Educational Testing Service.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716723.CrossRefGoogle Scholar
Andersen, E.B. (1985). Estimating latent correlations between repeated testings. Psychometrika, 50, 316.CrossRefGoogle Scholar
Andrade, D.F., Tavares, H.R. (2005). Item response theory for longitudinal data: population parameter estimation. Journal of Multivariate Analysis, 95, 122.CrossRefGoogle Scholar
Bock, R.D., Zimowski, M.F. (1997). Multiple group IRT. In van der Linden, W.J., Hambleton, R.K. (Eds.), Handbook of modern item response theory (pp. 433448). New York: Springer.CrossRefGoogle Scholar
Cai, L. (2010). High-dimensional exploratory item factor analysis by a Metropolis–Hastings Robbins–Monro algorithm. Psychometrika, 75, 3357.CrossRefGoogle Scholar
Draney, K., Wilson, M. (2007). Application of the Saltus model to stage-like data: some applications and current developments. In von Davier, M., Carstensen, C.H. (Eds.), Multivariate and mixture distribution rasch models (pp. 119130). New York: Springer.CrossRefGoogle Scholar
Embretson, S.E. (1991). A multidimensional latent trait model for measuring learning and change. Psychometrika, 56, 495515.CrossRefGoogle Scholar
Embretson, S.E. (1997). Structured ability models in tests designed from cognitive theory. In Wilson, M., Engelhard, G. Jr., Draney, K. (Eds.), Objective measurement: theory into practice (pp. 223236). Greenwich: Ablex.Google Scholar
Fischer, G.H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37, 359374.CrossRefGoogle Scholar
Fischer, G.H. (1976). Some probabilistic models for measuring change. In de Gruijter, D.N.M., van der Kamp, L.J.T. (Eds.), Advances in psychological and educational measurement (pp. 97110). New York: Wiley.Google Scholar
Fischer, G.H. (1995). Some neglected problems in IRT. Psychometrika, 60, 459487.CrossRefGoogle Scholar
Fischer, G.H. (2001). Gain scores revisited under an IRT perspective. In Boomsma, A., Van Duijn, M.A.J., Snijders, T.A.B. (Eds.), Essays on item response theory (pp. 4368). New York: Springer.CrossRefGoogle Scholar
Gilula, Z., Haberman, S.J. (2001). Analysis of categorical response profiles by informative summaries. Sociological Methodology, 31, 193211.CrossRefGoogle Scholar
Glück, J., Spiel, C. (1997). Item response models for repeated measures designs: application and limitations of four different approaches. Methods of Psychological Research Online, 2(1), 118. Retrieved March 12, 2009, from http://www.dgps.de/fachgruppen/methoden/mpr-online/issue2/art6/article.html.Google Scholar
Hsieh, C., Xu, X., von Davier, M. (2009). Variance estimation for NAEP data using a resampling-based approach: an application of cognitive diagnostic models. In von Davier, M., Hastedt, D. (Eds.), Issues and methodologies in large scale assessments (pp. 161174). Hamburg/Princeton: IEA-ETS Research Institute.Google Scholar
Lord, F.M., Novick, M.R. (1968). Statistical theories of mental test scores, Reading: Addison-Wesley.Google Scholar
Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149174.CrossRefGoogle Scholar
McLachlan, G., Peel, D. (2000). Finite mixture models, New York: Wiley.CrossRefGoogle Scholar
Meiser, T., Hein-Eggers, M., Rompe, P., Rudinger, G. (1995). Analyzing homogeneity and heterogeneity of change using Rasch and latent class models: a comparative and integrative approach. Applied Psychological Measurement, 19(4), 377391.CrossRefGoogle Scholar
Mislevy, R.J. (1991). Randomization-based inference about latent variables from complex samples. Psychometrika, 56(2), 177196.CrossRefGoogle Scholar
Muraki, E. (1992). A generalized partial credit model: application of an EM algorithm. Applied Psychological Measurement, 16(2), 159177.CrossRefGoogle Scholar
Organisation for Economic Co-operation and Development (2003). The PISA 2003 assessment framework: mathematics, reading, science and problem solving knowledge and skills. Paris: Author.Google Scholar
Organisation for Economic Co-operation and Development (2004). Learning for tomorrow’s world: first results from PISA 2003. Paris: Author.Google Scholar
Prenzel, M., Carstensen, C.H., Schöps, K., Maurischat, C. et al. (2006). Die Anlage des Längsschnitts bei PISA 2003 [The design of the longitudinal PISA assessment]. In Prenzel, M., Baumert, J., Blum, W., Lehmann, R., Leutner, D., Neubrand, M. et al. (Eds.), PISA 2003: Untersuchungen zur Kompetenzentwicklung im Verlauf eines Schuljahres [Studies on the development of competencies over the course of a school year] (pp. 2963). Münster: Waxmann.Google Scholar
Rasch, G. (1980). Probabilistic models for some intelligence and attainment tests, Chicago: University of Chicago Press.Google Scholar
Rijmen, F. (2009). Efficient full information maximum likelihood estimation for multidimensional IRT models (ETS Research Report No. RR-09-03). Princeton, NJ: ETS.CrossRefGoogle Scholar
Rijmen, F., de Boeck, P., Maas, H. (2005). An IRT model with a parameter-driven process for change. Psychometrika, 70, 651669.CrossRefGoogle Scholar
Rost, J. (1990). Rasch models in latent classes: an integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271282.CrossRefGoogle Scholar
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461464.CrossRefGoogle Scholar
Stanovich, K.E. (1986). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Reading Research Quarterly, 21(4), 360407.CrossRefGoogle Scholar
Vermunt, J.K. (2003). Multilevel latent class models. Sociological Methodology, 33, 213239.CrossRefGoogle Scholar
von Davier, M. (2005). A general diagnostic model applied to language testing data (ETS Research Report No. RR-05-16). Princeton, NJ: ETS.Google Scholar
von Davier, M. (2007a). Mixture general diagnostic models (ETS Research Report No. RR-07-32). ETS: Princeton, NJ.CrossRefGoogle Scholar
von Davier, M. (2007b). Hierarchical mixtures of diagnostic models (ETS Research Report No. RR-07-19). ETS: Princeton, NJ.CrossRefGoogle Scholar
von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61(2), 287307.CrossRefGoogle ScholarPubMed
von Davier, M. (2010). Hierarchical mixtures of diagnostic models. Psychological Test and Assessment Modeling, 52(1), 828. Retrieved from http://www.psychologie-aktuell.com/fileadmin/download/ptam/1-2010/02_vonDavier.pdf.Google Scholar
von Davier, M., Rost, J. (1995). Polytomous mixed Rasch models. In Fischer, G.H., Molenaar, I.W. (Eds.), Rasch models: foundations, recent developments, and applications (pp. 371379). New York: Springer.CrossRefGoogle Scholar
von Davier, M., Rost, J. (2006). Mixture distribution item response models. In Rao, C.R., Sinharay, S. (Eds.), Psychometrics (pp. 643661). Amsterdam: Elsevier.CrossRefGoogle Scholar
von Davier, M., Sinharay, S. (2007). An importance sampling EM algorithm for latent regression models. Journal of Educational and Behavioral Statistics, 32(3), 233251.CrossRefGoogle Scholar
von Davier, M., Sinharay, S. (2010). Stochastic approximation for latent regression item response models. Journal of Educational and Behavioral Statistics, 35(2), 174193.CrossRefGoogle Scholar
von Davier, M., von Davier, A. (2007). A unified approach to IRT scale linkage and scale transformations. Methodology, 3(3), 115124.CrossRefGoogle Scholar
von Davier, M., & Yamamoto, K. (2004). A class of models for cognitive diagnosis. Paper presented at the 4th Spearman invitational conference, October, Philadelphia, PA.Google Scholar
von Davier, M., Yamamoto, K. (2007). Mixture distribution Rasch models and hybrid Rasch models. In von Davier, M., Carstensen, C.H. (Eds.), Multivariate and mixture distribution rasch models (pp. 99115). New York: Springer.CrossRefGoogle Scholar
Walberg, H.J., Tsai, S.-L. (1983). Matthew effects in education. American Educational Research Journal, 20, 359373.Google Scholar
Wilson, M. (1989). Saltus: a psychometric model for discontinuity in cognitive development. Psychological Bulletin, 105, 276289.CrossRefGoogle Scholar
Wilson, M., Draney, K. (1997). Partial credit in a developmental context: the case for adopting a mixture model approach. In Wilson, M., Engelhard, G. Jr., Draney, K. (Eds.), Objective measurement: theory into practice (pp. 333350). Greenwich: Ablex.Google Scholar
Xu, X., & von Davier, M. (2006). Cognitive diagnosis for NAEP proficiency data (ETS Research Report No. RR-06-08). Princeton, NJ: ETS.Google Scholar
Xu, X., & von Davier, M. (2008). Comparing multiple-group multinomial loglinear models for multidimensional skill distributions in the general diagnostic model (ETS Research Report No. RR-08-35). Princeton, NJ: ETS.Google Scholar