Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T15:29:28.373Z Has data issue: false hasContentIssue false

The Measurement of Factor Indeterminacy

Published online by Cambridge University Press:  01 January 2025

Roderick P. McDonald*
Affiliation:
The Ontario Institute for Studies in Education

Abstract

Results obtained by Guttman [1955] on the determinacy of common factors have been thought to have disturbing consequences for the common factor model. It is argued that factors must be thought of as unobservable, and uniquely defined but numerically indeterminate. It follows that Guttman's measure of indeterminacy is inconsistent with the foundations of the factor model in probability theory, and the traditional measures of factor indeterminacy used by earlier writers should be reinstated. These yield no disturbing conclusions about the model.

Type
Original Paper
Copyright
Copyright © 1974 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. W. Some scaling models and estimation procedures in the latent class model. In Grenander, U. (Eds.), Probability and statistics: The Harold Cramer volume, 1959, N. Y.: Wiley.Google Scholar
Anderson, T. W. and Rubin, H. Statistical inference in factor analysis. Proceedings of the third Berkeley symposium on mathematical statistics and probability, 1956, 5, 111150.Google Scholar
Camp, B. H. The converse of Spearman's two factor theorem. Biometrika, 1932, 24, 418427.CrossRefGoogle Scholar
Feller, W. An introduction to probability theory and its applications, Vol. 1, 1957, N. Y.: Wiley.Google Scholar
Guttman, L. The determinacy of factor score matrices with implications for five other basic problems of common-factor theory. British Journal of statistical Psychology, 1955, 8, 6582.CrossRefGoogle Scholar
Harris, C. W. On factors and factor scores. Psychometrika, 1967, 32, 363379.CrossRefGoogle Scholar
Holzinger, K. J. Statistical résumé of the Spearman two-factor theory, 1930, Chicago: University of Chicago Press.Google Scholar
Jöreskog, K. G. Some contributions to maximum likelihood factor analysis. Psychometrika, 1967, 32, 443482.CrossRefGoogle Scholar
Kestelman, H.. The fundamental equation of factor analysis. British Journal of Psychology, Statistical Section, 1952, 5, 16.CrossRefGoogle Scholar
Ledermann, W. The orthogonal transformation of a factorial matrix into itself. Psychometrika, 1938, 3, 181187.CrossRefGoogle Scholar
McDonald, R. P. A note on the derivation of the general latent class model. Psychometrika, 1962, 27, 203206.CrossRefGoogle Scholar
McDonald, R. P. Numerical methods for polynomial models in nonlinear factor analysis. Psychometrika, 1967, 32, 77112.CrossRefGoogle Scholar
McDonald, R. P. Nonlinear factor analysis. Psychometric Monograph, No. 15, 1967b.Google Scholar
McDonald, R. P. and Burr, E. J. A comparison of four methods of constructing factor scores. Psychometrika, 1967, 32, 381401.CrossRefGoogle Scholar
Piaggio, H. T. H. Three sets of conditions necessary for the existence of a g that is real and unique except in sign. British Journal of Psychology, 1933, 24, 88105.Google Scholar
Schönemann, P. H. The minimum average correlation between equivalent sets of uncorrelated factors. Psychometrika, 1971, 36, 2130.CrossRefGoogle Scholar
Schönemann, P. H. and Wang, Ming-Mei Some new results on factor indeterminacy. Psychometrika, 1972, 37, 6191.CrossRefGoogle Scholar
Spearman, C. The proof and measurement of association between two things. American Journal of Psychology, 1904, 15, 72101.CrossRefGoogle Scholar
Spearman, C. The abilities of man, 1927, London: Macmillan & Co..Google Scholar
Thomson, G. H. The meaning of ‘i’ in the estimate of ‘g. British Journal of Psychology, 1934, 25, 9299.Google Scholar
Wilson, E. B. On hierarchical correlation systems. Proceedings of the National Academy of Science, 1928, 14, 283291.CrossRefGoogle ScholarPubMed

A correction has been issued for this article: