Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T09:38:21.888Z Has data issue: false hasContentIssue false

A Latent Transition Model With Logistic Regression

Published online by Cambridge University Press:  01 January 2025

Hwan Chung*
Affiliation:
Michigan State University
Theodore A. Walls
Affiliation:
University of Rhode Island
Yousung Park
Affiliation:
Korea University
*
Requests for reprints should be sent to Hwan Chung, Assistant Professor, Department of Epidemiology, Michigan State University, B 601 West Fee Hall, East Lansing, MI 48824, USA. E-mail: [email protected].; or to Theodore Walls, Assistant Professor, Department of Psychology, University of Rhode Island, 10 Chafee Road, Suite 15W, Kingston, RI 02881, USA. E-mail: [email protected].

Abstract

Latent transition models increasingly include covariates that predict prevalence of latent classes at a given time or transition rates among classes over time. In many situations, the covariate of interest may be latent. This paper describes an approach for handling both manifest and latent covariates in a latent transition model. A Bayesian approach via Markov chain Monte Carlo (MCMC) is employed in order to achieve more robust estimates. A case example illustrating the model is provided using data on academic beliefs and achievement in a low-income sample of adolescents in the United States.

Type
Original Paper
Copyright
Copyright © 2007 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was partially supported by the National Institute on Drug Abuse Grant 1-R03-DA021639. This research was partially supported by the National Institute on Drug Abuse Grant 1-P50-DA10075, The Methodology Center, The Pennsylvania State University. This research was partially supported by the National Institute of Mental Health funds as part of the Studying Diverse Lives research support program at the Henry A. Murray Research Archive, Institute for Quantitative Science, Harvard University.

References

Bandeen-Roche, K., Miglioretti, D.L., Zeger, S.L., Rathouz, P.J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association, 92, 13751386.CrossRefGoogle Scholar
Best, N., Cowles, M., & Vines, S. (1995). Coda: Convergence diagnostics and output analysis software for Gibbs sampler output, version 0.3 (Technical Report). MRC Biostatistics Unit.Google Scholar
Chung, H., Flaherty, B.P., Schafer, J.L. (2006). Latent class logistic regression: Application to marijuana use and attitudes among high school seniors. Journal of the Royal Statistical Society, Series A, 169, 723743.CrossRefGoogle Scholar
Chung, H., Loken, E., Schafer, J.L. (2004). Difficulties in drawing inferences with finite-mixture models: A simple example with a simple solution. The American Statistician, 58, 152158.CrossRefGoogle Scholar
Chung, H., Park, Y., Lanza, S.T. (2005). Latent transition analysis with covariates: Pubertal timing and substance use behaviors in adolescent females. Statistics in Medicine, 24, 28952910.CrossRefGoogle ScholarPubMed
Clogg, C.C., Goodman, L.A. (1984). Latent structure analysis of a set of multidimensional contingency tables. Journal of the American Statistical Association, 79, 762771.CrossRefGoogle Scholar
Collins, L.M., Fidler, P.L., Wugalter, S.E., Long, J.L. (1993). Goodness-of-fit testing for latent class models. Multivariate Behavioral Research, 28, 375389.CrossRefGoogle ScholarPubMed
Collins, L.M., Wugalter, S.E. (1992). Latent class models for stage-sequential dynamic latent variables. Multivariate Behavioral Research, 27, 131157.CrossRefGoogle Scholar
Eccles, J.S., Early, D., Frasier, K., Belansky, E., McCarthy, K. (1997). The relation of connection, regulation, and support for autonomy to adolescent’s functioning. Journal of Adolescent Research, 12, 263286.CrossRefGoogle Scholar
Garrett, E.S., Eaton, W.W., Zeger, S.L. (2002). Methods for evaluating the performance of diagnostic tests in the absence of a gold standard: A latent class model approach. Statistics in Medicine, 21, 12891307.CrossRefGoogle Scholar
Garrett, E.S., Zeger, S.L. (2000). Latent class model diagnosis. Biometrics, 56, 10551067.CrossRefGoogle ScholarPubMed
Gelfand, A.E., Smith, A.F.M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398409.CrossRefGoogle Scholar
Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B. (2004). Bayesian data analysis, (2nd ed.). London: Chapman & Hall.Google Scholar
Gelman, A., Meng, X.L., Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statistica Sinica, 6, 733807.Google Scholar
Gelman, A., Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457511.CrossRefGoogle Scholar
Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bernardo, J.M., Berger, J.O., Dawid, A.P., & Smith, A.F.M. (Eds.), Bayesian statistics (Vol. 4, pp. 169193). Oxford: Oxford University Press.Google Scholar
Goodman, L.A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215231.CrossRefGoogle Scholar
Hoijtink, H. (1998). Constrained latent class analysis using the Gibbs sampler and posterior predictive p-values: Applications to educational testing. Statistica Sinica, 8, 691711.Google Scholar
Kennedy, W.J., Gentle, J.E. (1980). Statistical computing, New York: Marcel Dekker.Google Scholar
Langeheine, R., Pannekoek, J., van de Pol, F. (1996). Bootstrapping goodness-of-fit measures in categorical data analysis. Sociological Methods and Research, 24, 492516.CrossRefGoogle Scholar
Lanza, S.T., Collins, L.M. (2002). Pubertal timing and the onset of substance use in females during early adolescence. Prevention Science, 3, 6982.CrossRefGoogle ScholarPubMed
Lanza, S.T., Collins, L.M., Schafer, J.L., Flaherty, B.P. (2005). Using data augmentation to obtain standard errors and conduct hypothesis tests in latent class and latent transition analysis. Psychological Methods, 10, 84100.CrossRefGoogle ScholarPubMed
Lanza, S.T., Flaherty, B.P., & Collins, L.M. (2003). Latent class and latent transition analysis. In Schinka, J.A., & Velicer, W.F. (Eds.), Handbook of psychology (pp. 663685). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Lazarsfeld, P.F., Henry, N.W. (1968). Latent structure analysis, Boston: Houghton Mifflin.Google Scholar
Lo, Y., Medell, N.R., Rubin, D.B. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767778.CrossRefGoogle Scholar
Lopez, D.F., Little, T.D., Oettingen, G., Baltes, P.B. (1998). Self-regulation and school performance: Is there optimal level of action-control. Journal of Experimental Child Psychology, 70, 5474.CrossRefGoogle ScholarPubMed
Martin, R.A., Velicer, W.F., Fava, J.L. (1996). Latent transition analysis to the stages of change for smoking cessation. Addictive Behaviors, 21, 6780.CrossRefGoogle Scholar
McHugh, R.B. (1956). Efficient estimation and local identification in latent class analysis. Psychometrika, 21, 331347.CrossRefGoogle Scholar
Metropolis, M., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E. (1953). Equations of state calculations by fast computing machine. Journal of Chemical Physics, 21, 10871091.CrossRefGoogle Scholar
Muthén, B.O., Muthén, L.K. (2000). Intergrating person-centered and variable centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research, 24, 882891.CrossRefGoogle Scholar
Muthén, L.K., Muthén, B.O. (2004). Mplus user’s guide, (3rd ed.). Los Angeles: Muthén & Muthén.Google Scholar
Pfeffermann, D., Skinner, C., Humphreys, K. (1998). The estimation of gross flows in the presence of measurement error using auxiliary variables. Journal of the Royal Statistical Society, Series A, 161, 1332.CrossRefGoogle Scholar
Richardson, S., Green, P.J. (1997). On Bayesian analysis of mixtures with an unknown number of components. Journal of the Royal Statistical Society, Series B, 59, 731792.CrossRefGoogle Scholar
Robert, C.P. (1996). Mixtures of distributions: Inference and estimation. In Gilks, W.R., Richardson, S., & Spiegelhalter, D.J. (Eds.), Markov chain Monte Carlo in practice (pp. 441464). London: Chapman & Hall.Google Scholar
Robert, C.P., Casella, G. (2004). Monte Carlo statistical methods, (2nd ed.). New York: Springer-Verlag.CrossRefGoogle Scholar
Roberts, G.O. (1992). Convergence diagnostics of the gibbs Sampler. In Bernardo, J.M., Berger, J.O., Dawid, A.P., & Smith, A.F.M. (Eds.), Bayesian statistics (Vol. 4, pp. 775782). Oxford: Oxford University Press.Google Scholar
Roeser, R.W., Eccles, J.S. (1998). Adolescent’s perceptions of middle school: Relation to longitudinal changes in academic and psychological adjustment. Journal of Research on Adolescence, 8(1), 123158.CrossRefGoogle Scholar
Rubin, D.B. (1976). Inference and missing data. Biometrika, 63, 581592.CrossRefGoogle Scholar
Rubin, D.B., & Stern, H.S. (1994). Testing in latent class models using a posterior predictive check distribution. In von Eye, A., & Clogg, C.C. (Eds.), Latent variables analysis: Applications for developmental research (pp. 420438). Thousand Oaks, CA: Sage.Google Scholar
Schafer, J.L. (1997). Analysis of incomplete multivariate data, London: Chapman & Hall.CrossRefGoogle Scholar
Tanner, W.A., Wong, W.H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association, 82, 528550.CrossRefGoogle Scholar
Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). Annals of Statistics, 22, 17011762.Google Scholar
Van de Pol, F., & Langeheine, R. (1990). Mixed Markov latent class models. In Clogg, C.C. (Ed.), Sociological methodology 1990 (pp. 213247). Oxford: Blackwell.Google Scholar
Van de Pol, F., & Langeheine, R. (1994). Discrete-time mixed Markov models. In Dale, A., & Davies, R.B. (Eds.), Analyzing social and political change: A casebook of methods (pp. 170197). London: Sage.Google Scholar
Vermunt, J.K., Langeheine, R., Böckenholt, U. (1999). Discrete-time discrete-state latent Markov models with time-constant and time-varying covariates. Journal of Educational and Behavioral Statistics, 24, 179207.CrossRefGoogle Scholar
Vermunt, J.K., Magidson, J. (2005). Latent GOLD 4.0 user’s guide, Belmont, MA: Statistical Innovations.Google Scholar
Walls, T.A., Little, T.D. (2005). Relations among personal agency, motivation, and school adjustment in early adolescence. Journal of Educational Psychology, 97(1), 2331.CrossRefGoogle Scholar
Wong, C.A., Eccles, J.S., Sameroff, A. (2003). The influence of ethnic discrimination and ethnic identification on African American adolescents’ school and socioemotional adjustment. Journal of Personality, 71(6), 11971232.CrossRefGoogle ScholarPubMed