Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T14:22:05.220Z Has data issue: false hasContentIssue false

A Latent Class Approach to Fitting the Weighted Euclidean Model, Clascal

Published online by Cambridge University Press:  01 January 2025

Suzanne Winsberg
Affiliation:
IRCAM, Paris, France
Geert De Soete*
Affiliation:
University of Ghent, Belgium
*
Requests for reprints should be sent to Geert De Soete, Department of Data Analysis, University of Ghent, Henri Dunantlaan 2, B-9000 Ghent, Belgium.

Abstract

A weighted Euclidean distance model for analyzing three-way proximity data is proposed that incorporates a latent class approach. In this latent class weighted Euclidean model, the contribution to the distance function between two stimuli is per dimension weighted identically by all subjects in the same latent class. This model removes the rotational invariance of the classical multidimensional scaling model retaining psychologically meaningful dimensions, and drastically reduces the number of parameters in the traditional INDSCAL model. The probability density function for the data of a subject is posited to be a finite mixture of spherical multivariate normal densities. The maximum likelihood function is optimized by means of an EM algorithm; a modified Fisher scoring method is used to update the parameters in the M-step. A model selection strategy is proposed and illustrated on both real and artificial data.

Type
Original Paper
Copyright
Copyright © 1993 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The second author is supported as “Bevoegdverklaard Navorser” of the Belgian “Nationaal Fonds voor Wetenschappelijk Onderzoek”.

References

Aitkin, M., Anderson, D., Hinde, J. (1981). Statistical modelling of data on teaching styles. Journal of the Royal Statistical Society, Series A, 144, 419461.CrossRefGoogle Scholar
Akaike, H. (1977). On entropy maximization. In Krishnaiah, P. R. (Eds.), Applications of statistics (pp. 2741). Amsterdam: North-Holland.Google Scholar
Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345370.CrossRefGoogle Scholar
Bozdogan, H. (1992). Choosing the number of component clusters in the mixture-model using a new informational complexity criterion of the inverse-Fisher information matrix. Paper presented at the 16th Annual Meeting of the German Classification Society, Dortmund, Germany.Google Scholar
Böckenholt, U., Böckenholt, I. (1990). Modeling individual differences in unfolding preference data: A restricted latent class approach. Applied Psychological Measurement, 14, 257269.CrossRefGoogle Scholar
Böckenholt, U., Böckenholt, I. (1991). Constrained latent class analysis: Simultaneous classification and scaling of discrete choice data. Psychometrika, 56, 699716.CrossRefGoogle Scholar
Carroll, J. D., Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an N-way generalization of Eckart-Young decomposition. Psychometrika, 35, 283319.CrossRefGoogle Scholar
Carroll, J. D., & Winsberg, S. (1991). Fitting an extended INDSCAL model to three-way proximity data. Unpublished manuscript, Rutgers University, Newark.Google Scholar
de Leeuw, J., Meulman, J. (1986). A special jackknife for multidimensional scaling. Journal of Classification, 3, 97112.CrossRefGoogle Scholar
Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 138.CrossRefGoogle Scholar
DeSarbo, W. S., Howard, D. J., Jedidi, K. (1991). MULTICLUS: A new method for simultaneously performing multidimensional scaling and cluster analysis. Psychometrika, 56, 121136.CrossRefGoogle Scholar
De Soete, G. (1990). A latent class approach to modeling pairwise preferential choice data. In Schader, M., Gaul, W. (Eds.), Knowledge, data and computer-assisted decisions (pp. 103113). Berlin: Springer-Verlag.CrossRefGoogle Scholar
De Soete, G. (1993). Using latent class analysis in categorization research. In Van Mechelen, I., Hampton, J., Michalski, R., Theuns, P. (Eds.), Categories and concepts: Theoretical views and inductive data analysis (pp. 309330). London: Academic Press.Google Scholar
De Soete, G., DeSarbo, W. S. (1991). A latent class probit model for analyzing pick any/N data. Journal of Classification, 8, 4563.CrossRefGoogle Scholar
De Soete, G., & Heiser, W. J. (1992). A latent class unfolding model for analyzing single stimulus preference ratings. Unpublished manuscript, University of Ghent, Belgium.Google Scholar
De Soete, G., Winsberg, S. (1993). A Thurstonian pairwise choice model with univariate and multivariate spline transformations. Psychometrika, 58, 233256.CrossRefGoogle Scholar
De Soete, G., & Winsberg, S. (in press). A latent class vector model for analyzing preference ratings. Journal of Classification.Google Scholar
Formann, A. K. (1989). Constrained latent class models: Some further applications. British Journal of Mathematical and Statistical Psychology, 42, 3754.CrossRefGoogle Scholar
Gower, J. C. (1966). Some distance properties of latent root and vector methods using multivariate analysis. Biometrika, 53, 325338.CrossRefGoogle Scholar
Hope, A. C. (1968). A simplified Monte Carlo significance test procedure. Journal of the Royal Statistical Society, Series B, 30, 582598.CrossRefGoogle Scholar
Lazarsfeld, P. F., Henry, R. W. (1968). Latent structure analysis, New York: Houghton Mifflin.Google Scholar
McLachlan, G. J., Basford, K. E. (1988). Mixture models, New York: Marcel Dekker.Google ScholarPubMed
Ramsay, J. O. (1977). Maximum likelihood estimation in multidimensional scaling. Psychometrika, 42, 241266.CrossRefGoogle Scholar
Ramsay, J. O. (1982). Some statistical approaches to multidimensional scaling data. Journal of the Royal Statistical Society, Series A, 145, 285312.CrossRefGoogle Scholar
Ramsay, J. O. (1991). MULTISCALE manual (Extended version), Montreal: McGill University.Google Scholar
Schwarz, G. (1978). Estimating the dimensions of a model. Annals of Statistics, 6, 461464.CrossRefGoogle Scholar
Torgerson, W. S. (1958). Theory and methods of scaling, New York: Wiley.Google Scholar
Winsberg, S., Carroll, J. D. (1989). A quasi-nonmetric method for multidimensional scaling via an extended Euclidean model. Psychometrika, 54, 217229.CrossRefGoogle Scholar
Winsberg, S., Carroll, J. D. (1989). A quasi-nonmetric method for multidimensional scaling of multiway data via a restricted case of an extended INDSCAL model. In Coppi, R., Bolasco, S. (Eds.), Multiway data analysis (pp. 405414). Amsterdam: North-Holland.Google Scholar
Winsberg, S., Ramsay, J. O. (1983). Monotone spline transformations for dimension reduction. Psychometrika, 48, 575595.CrossRefGoogle Scholar