No CrossRef data available.
Article contents
John J. McArdle & John R. Nesselroade (2014). Longitudinal Data Analysis Using Structural Equation Models American Psychological Association, 426 pp, $89.95
Review products
John J. McArdle & John R. Nesselroade (2014). Longitudinal Data Analysis Using Structural Equation Models American Psychological Association, 426 pp, $89.95
Published online by Cambridge University Press: 01 January 2025
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Book Review
- Information
- Copyright
- Copyright © 2017 The Psychometric Society
References
Baltes, P. B., & Nesselroade, J. R. Nesselroade, J. R., & Baltes, P. B. (1979). History and rationale of longitudinal research. Longitudinal research in the study of behavior and development, New York: Academic Press 1–39.Google Scholar
Hoffman, L. (2015). Longitudinal analysis: Modeling within-person fluctuation and change, New York: Routledge.CrossRefGoogle Scholar
McArdle, J. J. Nesselroade, J. R., & Cattell, R. B. (1988). Dynamic but structural equation modeling of repeated measures data. The handbook of multivariate experimental psychology, New York: Plenum Press 561–614CrossRefGoogle Scholar
McArdle, J. J. Maydeu-Olivares, A., & McArdle, J. J. (2005). The development of the RAM rules for latent variable structural equation modeling. Contemporary psychometrics: A festschrift for Roderick P. McDonald, Mahwah, NJ: Lawrence Erlbaum Associates 225–274.Google Scholar
McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the reticular action model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234–251CrossRefGoogle ScholarPubMed