Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T10:27:32.779Z Has data issue: false hasContentIssue false

John J. McArdle & John R. Nesselroade (2014). Longitudinal Data Analysis Using Structural Equation Models American Psychological Association, 426 pp, $89.95

Review products

John J. McArdle & John R. Nesselroade (2014). Longitudinal Data Analysis Using Structural Equation Models American Psychological Association, 426 pp, $89.95

Published online by Cambridge University Press:  01 January 2025

Kevin Grimm*
Affiliation:
Arizona State University

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Review
Copyright
Copyright © 2017 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baltes, P. B., & Nesselroade, J. R. Nesselroade, J. R., & Baltes, P. B. (1979). History and rationale of longitudinal research. Longitudinal research in the study of behavior and development, New York: Academic Press 139.Google Scholar
Hoffman, L. (2015). Longitudinal analysis: Modeling within-person fluctuation and change, New York: Routledge.CrossRefGoogle Scholar
McArdle, J. J. Nesselroade, J. R., & Cattell, R. B. (1988). Dynamic but structural equation modeling of repeated measures data. The handbook of multivariate experimental psychology, New York: Plenum Press 561614CrossRefGoogle Scholar
McArdle, J. J. Maydeu-Olivares, A., & McArdle, J. J. (2005). The development of the RAM rules for latent variable structural equation modeling. Contemporary psychometrics: A festschrift for Roderick P. McDonald, Mahwah, NJ: Lawrence Erlbaum Associates 225274.Google Scholar
McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the reticular action model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234251CrossRefGoogle ScholarPubMed