Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-08T09:42:05.315Z Has data issue: false hasContentIssue false

Jeffrey S. Simonoff. Smoothing methods in statistics. Springer Series in Statistics. New York: Springer, 1996. 338 pp. DM 84.

Review products

Jeffrey S. Simonoff. Smoothing methods in statistics. Springer Series in Statistics. New York: Springer, 1996. 338 pp. DM 84.

Published online by Cambridge University Press:  01 January 2025

Suzanne Winsberg*
Affiliation:
IRCAM

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Review
Copyright
Copyright © 1997 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Eubank, R. L. (1988). Spline smoothing and nonparametric regression, New York: Marcel Dekker.Google Scholar
Green, P. J., Silverman, B. W. (1994). Nonparametric regression and generalized linear models: A roughness penalty approach, London: Chapman and Hall.CrossRefGoogle Scholar
Härdle, W. (1990). Applied nonparametric regression, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hastie, T., Tibshirani, R. (1990). Generalized additive models, London: Chapman and Hall.Google Scholar
Scott, P. W. (1992). Multivariate density estimation: Theory, practice and visualization, New York: John Wiley.CrossRefGoogle Scholar
Silverman, B. W. (1986). Density models for observational data, Philadelphia: SIAM.Google Scholar
Wand, M. P., Jones, M. C. (1995). Kernel smoothing, London: Chapman and Hall.CrossRefGoogle Scholar