Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T05:35:59.497Z Has data issue: false hasContentIssue false

Interpreting Canonical Correlation Analysis through Biplots of Structure Correlations and Weights

Published online by Cambridge University Press:  01 January 2025

Cajo J. F. ter Braak*
Affiliation:
Agricultural Mathematics Group, Research Institute for Nature Management
*
Requests for reprints should be sent to Cajo J. F. ter Braak, Agricultural Mathematics Group, Box 100, 6700 AC Wageningen, THE NETHERLANDS.

Abstract

This paper extends the biplot technique to canonical correlation analysis and redundancy analysis. The plot of structure correlations is shown to the optimal for displaying the pairwise correlations between the variables of the one set and those of the second. The link between multivariate regression and canonical correlation analysis/redundancy analysis is exploited for producing an optimal biplot that displays a matrix of regression coefficients. This plot can be made from the canonical weights of the predictors and the structure correlations of the criterion variables. An example is used to show how the proposed biplots may be interpreted.

Type
Original Paper
Copyright
Copyright © 1990 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

I am indebted to L. C. A. Corsten, K. R. Gabriel, A. Z. Israëls, J. M. F. ten Berge, H. A. L. Kiers, J. de Bree and A. A. M. Jansen for comments on the manuscript.

References

Adelman, I., & Morris, C. T. (1967). Society, politics & economic development, Baltimore: John Hopkins Press.Google Scholar
Adelman, I., Geier, M., & Morris, C. T. (1969). Instruments and goals in economic development. American Economic Review—Papers and Prodeedings, 59, 409426.Google Scholar
Anderson, T. W. (1951). Estimating linear restrictions on regression coefficients for multivariate normal distributions. Annals of mathematical Statistics, 22, 327351.CrossRefGoogle Scholar
Anderson, T. W. (1984). An introduction to multivariate statistical analysis 2nd. ed.,, New York: Wiley.Google Scholar
Bartlett, M. S. (1938). Further aspects of the theory of multiple regression. Proceedings of the Cambridge Philosophical Society, 34, 3340.CrossRefGoogle Scholar
Bock, R. D. (1975). Multivariate statistical methods in behavioral research, New York: McGraw-Hill.Google Scholar
Brillinger, D. R. (1981). Time series: Data analysis and theory, San Francisco: Holden-Day.Google Scholar
Browne, M. W. (1979). The maximum-likelihood solution in inter-battery factor analysis. British Journal of Mathematical and Statistical Psychology, 32, 7586.CrossRefGoogle Scholar
Cailliez, F., & Pagès, J. P. (1976). Introduction à l'analyse des données [Introduction to data analysis], Paris: SMASH.Google Scholar
Corsten, L. C. A. (1976). Matrix approximation, a key to application of multivariate methods. Proceedings of the 9th International Biometric Conference (pp. 6177). Raleigh: The Biometric Society.Google Scholar
Davies, P. T., & Tso, M.K-S. (1982). Procedures for reduced-rank regression. Applied Statistics, 31, 244255.CrossRefGoogle Scholar
de Leeuw, J., Mooijaart, A., & van der Leeden, R. (1985). Fixed factor score models with linear restrictions, Leiden: Department of Datatheory.Google Scholar
DeSarbo, W. S. (1981). Canonical/redundancy factoring analysis. Psychometrika, 46, 307329.CrossRefGoogle Scholar
Eckhart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1, 211218.CrossRefGoogle Scholar
Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58, 453467.CrossRefGoogle Scholar
Gabriel, K. R. (1982). Biplot. In Kotz, S., & Johnson, N. L. (Eds.), Encyclopedia of statistical sciences (pp. 263271). New York: Wiley.Google Scholar
Gifi, A. (1981). Nonlinear multivariate analysis, Leiden: Department of Datatheory.Google Scholar
Gittins, R. (1985). Canonical analysis. A review with applications in ecology, Berlin: Springer-Verlag.Google Scholar
Gower, J. C., & Harding, S. (1988). Nonlinear biplots. Biometrika, 75, 445455.CrossRefGoogle Scholar
Greenacre, M. J. (1984). Theory and applications of correspondence analysis, New York: Wiley.Google Scholar
Haber, M., & Gabriel, K. R. (1976). Weighted least squares approximation of matrices and its application to canonical correlations and biplot display, Rochester: University of Rochester, Department of Statistics.Google Scholar
Horst, P. (1961). Relations among m sets of measures. Psychometrika, 26, 129150.CrossRefGoogle Scholar
Israëls, A. Z. (1984). Redundancy analysis for qualitative variables. Psychometrika, 49, 331346.CrossRefGoogle Scholar
Israëls, A. Z. (1987). Eigenvalue techniques for qualitative data, Leiden: DSWO Press.Google Scholar
Izenman, A. J. (1975). Reduced-rank regression for the multivariate linear model. Journal of Multivariate Analysis, 5, 248264.CrossRefGoogle Scholar
Jöreskog, K. G., & Sörbom, D. (1983). LISREL VI Users Guide, Uppsala: Department of Statistics.Google Scholar
Kendall, M. (1975). Multivariate analysis, London: Griffin.Google Scholar
McKeon, J. J. (1966). Canonical analysis: Some relations between canonical correlation, factor analysis, discriminant function analysis, and scaling theory. Psychometrika Monograph No. 13.Google Scholar
Meredith, W. (1964). Canonical correlations with fallible data. Psychometrika, 29, 5565.CrossRefGoogle Scholar
Montgomery, D. C., Peck, E. A. (1982). Introduction to linearregression analysis, New York: Wiley.Google Scholar
Rao, C. R. (1975). Linear statistical inference and its applications, New York: Wiley.Google Scholar
Rao, C. R. (1979). Separation theorems for singular values of matrices and their applications in multivariate analysis. Journal of Multivariate analysis, 9, 362377.CrossRefGoogle Scholar
Rao, C. R. (1980). Matrix approximations and reduction of dimensionality in multivariate statistical analysis. In Krishnaiah, P. R. (Eds.), Multivariate Analysis V (pp. 322). Amsterdam: North-Holland.Google Scholar
Rencher, A. C. (1988). On the use of correlations to interpret canonical functions. Biometrika, 75, 363365.CrossRefGoogle Scholar
Röhr, M. (1987). Kanonische Korrelationsanalyse [Canonical correlation analysis], Berlin: Akademie-Verlag.CrossRefGoogle Scholar
Roy, S. N., & Whittlesey, J. (1952). Canonical partial correlations. Annals of Mathematical Statistics, 23, 642642.Google Scholar
Sabatier, R., Jan, Y., & Escoufier, Y. et al. (1984). Approximations d'applications lineaires et analyse en composantes principales [Approximations of linear operators and principal components analysis]. In Diday, E. et al. (Eds.), Data analysis and informatics III (pp. 569580). Amsterdam: North Holland.Google Scholar
Saris, W., & Stronkhorst, H. (1984). Causal modelling in nonexperimental research, Amsterdam: Sociometric Research Foundation.Google Scholar
Thompson, B. (1984). Canonical correlation analysis: Uses and interpretation, Sage: Beverly Hills.CrossRefGoogle Scholar
Thorndike, R. M., & Weiss, D. J. (1973). A study of the stability of canonical correlations and canonical components. Educational Psychological Measurement, 3, 123134.CrossRefGoogle Scholar
Timm, N. H., & Carlson, J. E. (1976). Part and bipartial canonical correlation analysis. Psychometrika, 41, 159176.CrossRefGoogle Scholar
Tso, M. K-S. (1981). Reduced-rank regression and canonical analysis. Journal of the Royal Statistical Society, 43, 183189.CrossRefGoogle Scholar
Tucker, L. R. (1958). An inter-battery method of factor analysis. Psychometrika, 23, 111136.CrossRefGoogle Scholar
van den Wollenberg, A. L. (1977). Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika, 42, 207219.CrossRefGoogle Scholar
van der Burg, E., & de Leeuw, J. (1983). Nonlinear canonical correlation. British Journal of Mathematical and Statistical Psychology, 36, 5480.CrossRefGoogle Scholar
van der Geer, J. P. (1986). Introduction to linear multivariate data analysis, Vol. 1, Leiden: DSWO Press.Google Scholar
Velu, R. P., Reinsel, G. C., & Wichern, D. W. (1986). Reduced rank models for multiple time series. Biometrika, 73, 105118.CrossRefGoogle Scholar
Wold, H. (1982). Soft modeling: The basic design and some extensions. In Jöreskog, K. G. & Wold, H. (Eds.), Systems under indirect observation, Vol. 2 (pp. 154). Amsterdam: North-Holland.Google Scholar