Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T10:16:06.275Z Has data issue: false hasContentIssue false

Incorporating Prior Theory in Covariance Structure Analysis: A Bayesian Approach

Published online by Cambridge University Press:  01 January 2025

Claes Fornell*
Affiliation:
The Universty of Michigan
Roland T. Rust
Affiliation:
Vanderbilt University
*
Requests for reprints should be sent to Claes Fornell, Graduate School of Business Administration, University of Michigan, Ann Arbor, M1 48109.

Abstract

A Bayesian approach to the testing of competing covariance structures is developed. The method provides approximate posterior probablities for each model under consideration without prior specification of individual parameter distributions. The method is based on ayesian updating using cross-validated pseudo-likelihoods. Given that the observed variables are the samefor all competing models, the approximate posterior probabilities may be obtained easily from the chi square values and other known constants, using only a hand calculator. The approach is illustrated using and example which illustrates how the prior probabilities can alter the results concerning which model specification is preferred.

Type
Original Paper
Copyright
Copyright © 1989 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1973). Information theory and an extention of the maximum likelihood principle. In Petrov, B. N., Csadki, F. (Eds.), Proceedings of the Second International Symposium of Information Theory (pp. 267281). Bidapest: Akademiai Kiado.Google Scholar
Akaike, H. (1974). A new look at statistical model identification. IEEE Transactions on Automatic Control, 19, 716723.CrossRefGoogle Scholar
Bagozzi, R. P., Burnkrant, R. E. (1979). Attitude organization and the attitude-behavior relationship. Journal of Personality and Social Psychology, 37, 913929.CrossRefGoogle Scholar
Bogozzi, R. P., Burnkrant, R. E. (1985). Attitude organization and the attutude-behavior relation: A reply to Dillon and Kumar. Journal of Personality and Social Psychology, 49(1), 4757.CrossRefGoogle Scholar
Bartlett, M. S. (1985). The effect of standardiazation on an approximation in factor analysis. Biometrika, 38, 337344.Google Scholar
Bentler, P.M., Bonnett, D. (1980). Significance test and goodness-of-fit in covariance structures. Psychological Bulletin, 88(3), 588606.CrossRefGoogle Scholar
Bozdogan, H., Sclove, S. L. (1982). Multi-sample cluster analysis with varying parameters using Akaike's information criterion. Paper presented at the 142nd anual meeting of The American Statistical Association, Cincinnati OH.Google Scholar
Clayton, M. K., Geisser, S., Jennings, D. E. (1986). A comparison of several model selection procedures. In Zellner, A., Kadane, J. B. (Eds.), Bayesian inference and decision techniques, Amersterdam: North Holand.Google Scholar
Cliff, L. (1983). Some cautions concerning the application of causal modeling methods. Multivariate Behavioral Research, 18(1), 147167.CrossRefGoogle ScholarPubMed
Cudeck, R., Browne, M. W. (1983). ATCross-validation of covariand structures. Multivariate Behavior Research, 18(1), 115–26.CrossRefGoogle ScholarPubMed
Cudeck, R., Browne, M. W. (1983). Cross-validation of covariance structures. Multivariate Behavioral Research, 18(2), 147167.CrossRefGoogle ScholarPubMed
Dillon, W. R., Kumar, S. (1985). Attitude organization and the attude-behavior relation: A critique of Bagozzi and burnkrant's reanalysis of Fishbein and Ajzen.. Journal of Personality and Social Psychology, 49, 3346.CrossRefGoogle Scholar
Fishbein, M., Ajzen, I. (1974). Attitudes toward objects as predictors of single and multiple behavioral criteria. Psychological Review, 81, 5974.CrossRefGoogle Scholar
Geisser, S., Eddy, W. F. (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74, 153160.CrossRefGoogle Scholar
Harkema, R. (1971). Simultaneous equations: A Bayesian approach, Rotterdam: Rotterdam University Press.Google Scholar
Inagaki, N. (1977). Two errors in statistical model fitting. Annals of the Institute of Statistical Mathematics, Part A, 29, 131152.CrossRefGoogle Scholar
Jöreskog, K. G. (1981). Analysis of covariance structures. Scandanavian Journal of Statistics, 8, 6583.Google Scholar
Jöreskog, K. G., Sörbom, D. (1985). Lisrel VI: Analysis of linear structural relationships by mehtod of maximum likelihood, Mooresville, IN: Scientific Software.Google Scholar
Lee, S. Y. (1981). A Bayesian approach to confirmatory factor analysis. Psychometrika, 46, 151160.CrossRefGoogle Scholar
Liu, L., Hanssens, D. M. (1981). A Bayesian approach to time-varying cross-sectional regression models. Journal of Economics, 15, 341356.CrossRefGoogle Scholar
Rust, R. T., Schmittlein, D. C. (1985). A Bayesian cross-validated likeihood method for comparing alternative specifications of quantitative models. Marketing Science, 4, 2040.CrossRefGoogle Scholar
Stone, M. (1977). On asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. Journal of Royal Statistical Society, 39, 4447.CrossRefGoogle Scholar
Takane, Y. (1981). Multidimensional successive categories scaling: A maximum likelihood method. Psychometrika, 46, 928.CrossRefGoogle Scholar
Takane, Y., & Bozdogan, H. (1987). Ideal Point Discriminant Analysis. unpublished working paper.CrossRefGoogle Scholar
Takane, Y. (1982). Maximum likelihood additive analysis. Psychometrika, 47, 225241.CrossRefGoogle Scholar
Takane, Y., Carroll, J. D. (1981). Nometric maximum likelihood multidimensional scaling from directional rankings of similarities. Psychometrika, 46, 339405.CrossRefGoogle Scholar
Takane, Y., Sergent, J. (1983). Multidimensional scaling models for reaction ties and same-different judgements. Psychometrika, 48, 393423.CrossRefGoogle Scholar
Zellner, A. (1971). An introduction to Bayesian inference in econometrics, New York: John Wiley.Google Scholar