Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T15:33:00.009Z Has data issue: false hasContentIssue false

Identifiability of Latent Class Models with Covariates

Published online by Cambridge University Press:  01 January 2025

Jing Ouyang
Affiliation:
University Of Michigan
Gongjun Xu*
Affiliation:
University Of Michigan
*
Correspondence should be made to Gongjun Xu, Department of Statistics, University of Michigan, 456 West Hall, 1085 South University, Ann Arbor, MI48109, USA. Email: [email protected]

Abstract

Latent class models with covariates are widely used for psychological, social, and educational research. Yet the fundamental identifiability issue of these models has not been fully addressed. Among the previous research on the identifiability of latent class models with covariates, Huang and Bandeen-Roche (Psychometrika 69:5–32, 2004) studied the local identifiability conditions. However, motivated by recent advances in the identifiability of the restricted latent class models, particularly cognitive diagnosis models (CDMs), we show in this work that the conditions in Huang and Bandeen-Roche (Psychometrika 69:5–32, 2004) are only necessary but not sufficient to determine the local identifiability of the model parameters. To address the open identifiability issue for latent class models with covariates, this work establishes conditions to ensure the global identifiability of the model parameters in both strict and generic sense. Moreover, our results extend to the polytomous-response CDMs with covariates, which generalizes the existing identifiability results for CDMs.

Type
Theory & Methods (T&M)
Copyright
Copyright © 2022 The Author(s) under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary Information The online version contains supplementary material available at https://doi.org/S0033312300005494a.

References

Allman, E. S., Matias, C., Rhodes, J. A., (2009). Identifiability of parameters in latent structure models with many observed variables Annals of Statistics 37 6A 30993132 10.1214/09-AOS689CrossRefGoogle Scholar
Bakk, Z., Tekle, F. B., Vermunt, J. K., (2013). Estimating the association between latent class membership and external variables using bias-adjusted three-step approaches Sociological Methodology 43 (1) 272311 10.1177/0081175012470644CrossRefGoogle Scholar
Chen, J., de la Torre, J., (2018). Introducing the general polytomous diagnosis modeling framework Frontiers in Psychology 9 1474 30186195 6113892 10.3389/fpsyg.2018.01474CrossRefGoogle ScholarPubMed
Chen, Y., Culpepper, S., Liang, F., (2020). A sparse latent class model for cognitive diagnosis Psychometrika 85 (1) 121153 31927684 10.1007/s11336-019-09693-2CrossRefGoogle ScholarPubMed
Chen, Y., Liu, J., Xu, G., Ying, Z., (2015). Statistical analysis of Q-matrix based diagnostic classification models Journal of the American Statistical Association 110 (510) 850866 26294801 10.1080/01621459.2014.934827CrossRefGoogle Scholar
Clogg, C. C., Goodman, L. A., (1984). Latent structure analysis of a set of multidimensional contingency tables Journal of the American Statistical Association 79 (388) 762771 10.1080/01621459.1984.10477093CrossRefGoogle Scholar
Collins, L. M., & Lanza, S. T. (2009). Latent class and latent transition analysis: With applications in the social, behavioral, and health sciences (Vol. 718). Wiley.CrossRefGoogle Scholar
Culpepper, S. A., (2019). An exploratory diagnostic model for ordinal responses with binary attributes: Identifiability and estimation Psychometrika 84 (4) 921940 31432312 10.1007/s11336-019-09683-4CrossRefGoogle ScholarPubMed
Dayton, C. M., Macready, G. B., (1988). Concomitant-variable latent-class models Journal of the American Statistical Association 83 (401) 173178 10.1080/01621459.1988.10478584CrossRefGoogle Scholar
de la Torre, J., (2011). The generalized DINA model framework Psychometrika 76 (2) 179199 10.1007/s11336-011-9207-7CrossRefGoogle Scholar
Fang, G., Liu, J., Ying, Z., (2019). On the identifiability of diagnostic classification models Psychometrika 84 (1) 1940 30673967 10.1007/s11336-018-09658-xCrossRefGoogle ScholarPubMed
Formann, A. K., (1985). Constrained latent class models: Theory and applications British Journal of Mathematical and Statistical Psychology 38 (1) 87111 10.1111/j.2044-8317.1985.tb00818.xCrossRefGoogle Scholar
George, A. C., Robitzsch, A., Kiefer, T., Groß, J., Ünlü, A., (2016). The R package CDM for cognitive diagnosis models Journal of Statistical Software 74 (2) 124 10.18637/jss.v074.i02CrossRefGoogle Scholar
Goodman, L. A., (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models Biometrika 61 (2) 215231 10.1093/biomet/61.2.215CrossRefGoogle Scholar
Gu, Y., Xu, G., (2019). The sufficient and necessary condition for the identifiability and estimability of the DINA model Psychometrika 84 (2) 468483 29728918 10.1007/s11336-018-9619-8CrossRefGoogle ScholarPubMed
Gu, Y., Xu, G., (2020). Partial identifiability of restricted latent class models Annals of Statistics 48 (4) 20822107 10.1214/19-AOS1878CrossRefGoogle Scholar
Gu, Y., Xu, G., (2021). Sufficient and necessary conditions for the identifiability of the Q-matrix Statistica Sinica 31 449472Google Scholar
Gyllenberg, M., Koski, T., Reilink, E., Verlaan, M., (1994). Non-uniqueness in probabilistic numerical identification of bacteria Journal of Applied Probability 31 (2) 542548 10.2307/3215044CrossRefGoogle Scholar
Huang, G-H (2005). Selecting the number of classes under latent class regression: A factor analytic analogue Psychometrika 70 (2) 325345 10.1007/s11336-003-1083-3CrossRefGoogle Scholar
Huang, G-H Bandeen-Roche, K., (2004). Building an identifiable latent class model with covariate effects on underlying and measured variables Psychometrika 69 (1) 532 10.1007/BF02295837CrossRefGoogle Scholar
Junker, B. W., Sijtsma, K., (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory Applied Psychological Measurement 25 (3) 258272 10.1177/01466210122032064CrossRefGoogle Scholar
Koopmans, T. C. (1950). Statistical inference in dynamic economic models. Wiley.Google Scholar
Koopmans, T. C., Reiersol, O., (1950). The identification of structural characteristics Annals of Mathematical Statistics 21 (2) 165181 10.1214/aoms/1177729837CrossRefGoogle Scholar
Kruskal, J. B., (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics Linear Algebra and its Applications 18 (2) 95138 10.1016/0024-3795(77)90069-6CrossRefGoogle Scholar
McHugh, R. B., (1956). Efficient estimation and local identification in latent class analysis Psychometrika 21 (4) 331347 10.1007/BF02296300CrossRefGoogle Scholar
Muthén, B., Masyn, K., (2005). Discrete-time survival mixture analysis Journal of Educational and Behavioral Statistics 30 (1) 2758 10.3102/10769986030001027CrossRefGoogle Scholar
Muthén, L., & Muthén, B. (2017). Mplus user’s guide: Statistical analysis with latent variables, user’s guide. Muthén & Muthén.Google Scholar
Pan, J-C Huang, G-H (2014). Bayesian inferences of latent class models with an unknown number of classes Psychometrika 79 (4) 621646 24327064 10.1007/s11336-013-9368-7CrossRefGoogle ScholarPubMed
Park, Y. S., Lee, Y-S (2014). An extension of the DINA model using covariates: Examining factors affecting response probability and latent classification Applied Psychological Measurement 38 (5) 376390 10.1177/0146621614523830CrossRefGoogle Scholar
Park, Y. S., Xing, K., Lee, Y-S (2018). Explanatory cognitive diagnostic models: Incorporating latent and observed predictors Applied Psychological Measurement 42 (5) 376392 30034055 10.1177/0146621617738012CrossRefGoogle ScholarPubMed
Petersen, J., Bandeen-Roche, K., Budtz-Jørgensen, E., Groes Larsen, K., (2012). Predicting latent class scores for subsequent analysis Psychometrika 77 (2) 244262 23653489 3644419 10.1007/s11336-012-9248-6CrossRefGoogle ScholarPubMed
Reboussin, B. A., Ip, E. H., Wolfson, M., (2008). Locally dependent latent class models with covariates: an application to under-age drinking in the USA Journal of the Royal Statistical Society: Series A (Statistics in Society) 171 (4) 877897 10.1111/j.1467-985X.2008.00544.xCrossRefGoogle ScholarPubMed
Robitzsch, A., Kiefer, T., George, A. C., & Ünlü, A. (2020). CDM: Cognitive diagnosis modeling. Retrieved from https://CRAN.R-project.org/package=CDM (R package version 7.5-15)Google Scholar
Templin, J. L., Henson, R. A., (2006). Measurement of psychological disorders using cognitive diagnosis models Psychological Methods 11 (3) 287305 16953706 10.1037/1082-989X.11.3.287CrossRefGoogle ScholarPubMed
van der Heijden, P. G. M., Dessens, J., Bockenholt, U., (1996). Estimating the concomitant-variable latent-class model with the EM algorithm Journal of Educational and Behavioral Statistics 21 (3) 215229 10.3102/10769986021003215CrossRefGoogle Scholar
von Davier, M., (2008). A general diagnostic model applied to language testing data British Journal of Mathematical and Statistical Psychology 61 (2) 287307 10.1348/000711007X193957CrossRefGoogle ScholarPubMed
Wu, Z., Deloria-Knoll, M., Zeger, S. L., (2017). Nested partially latent class models for dependent binary data; estimating disease etiology Biostatistics 18 (2) 200213 27549120Google ScholarPubMed
Xu, G., (2017). Identifiability of restricted latent class models with binary responses Annals of Statistics 45 (2) 675707 10.1214/16-AOS1464CrossRefGoogle Scholar
Xu, G., Shang, Z., (2018). Identifying latent structures in restricted latent class models Journal of the American Statistical Association 113 (523) 12841295 10.1080/01621459.2017.1340889CrossRefGoogle Scholar
Xu, G., Zhang, S., (2016). Identifiability of diagnostic classification models Psychometrika 81 (3) 625649 26155755 10.1007/s11336-015-9471-zCrossRefGoogle ScholarPubMed
Supplementary material: File

Ouyang and Xu supplementary material

Ouyang and Xu supplementary material
Download Ouyang and Xu supplementary material(File)
File 359.1 KB