We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
Bartolucci, F., Bacci, S., & Gnaldi, M. (2015). Statistical Analysis of Questionnaires: A Unified Approach Based on R and Stata. Chapman & Hall/CRC.CrossRefGoogle Scholar
Bartolucci, F., Farcomeni, A., & Pennoni, F. (2013). Latent Markov Models for Longitudinal Data. Chapman & Hall/CRC Press.Google Scholar
Bartolucci, F., Pandolfi, S., Pennoni, F.. (2017). LMest: An R package for latent Markov models for longitudinal categorical data. Journal of Statistical Software, 81, 1–38.CrossRefGoogle Scholar
Bouveyron, C., Celeux, G., Murphy, T. B., Raftery, A. E.. (2019). Model-Based Clustering and Classification for Data Science: With Applications in R, Cambridge University Press.CrossRefGoogle Scholar
Ephraim, Y., Merhav, N.. (2002). Hidden Markov processes. IEEE Transactions on Information Theory, 48, 1518–1569.CrossRefGoogle Scholar
Everitt, B. S., & Hand, D. J. (1981). Finite Mixture Distributions. Chapman and Hall/CRC Press.CrossRefGoogle Scholar
Frühwirth-Schnatter, S., Celeux, G., & Robert, C. P. (2019). Handbook of Mixture Analysis. Chapman and Hall/CRC Press.CrossRefGoogle Scholar
Grün, B., Leisch, F.. (2008). FlexMix version 2: Finite mixtures with concomitant variables and varying and constant parameters. Journal of Statistical Software, 28, 1–35.CrossRefGoogle Scholar
Linzer, D. A., Lewis, J. B.. (2011). poLCA: An R package for polytomous variable latent class analysis. Journal of Statistical Software, 42, 1–29.CrossRefGoogle Scholar
MacDonald, I. L., & Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-Valued Time Series. Chapman and Hall/CRC Press.Google Scholar
McLachlan, G. J., Lee, S. X., Rathnayake, S. I.. (2019). Finite mixture models. Annual Review of Statistics and Its Application, 6, 355–378.CrossRefGoogle Scholar
McNicholas, P. D. (2016). Mixture Model-Based Classification. Chapman and Hall/CRC Press.CrossRefGoogle Scholar
R Core Team. (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.Google Scholar
Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). GLLAMM manual. Work. Pap., Div. Biostat., Univ. Calif., Berkeley.Google Scholar
Scrucca, L., Fraley, C., Murphy, T. B., & Raftery, A. E. (2023). Model-Based Clustering, Classification, and Density Estimation Using Mclust in R. Chapman and Hall/CRC Press.CrossRefGoogle Scholar
Vermunt, J. K.. (2003). Multilevel latent class models. Sociological Methodology, 33, 213–239.CrossRefGoogle Scholar
Vermunt, J. K., & Magidson, J. (2021). Upgrade manual for latent GOLD basic, advanced, syntax, and choice Version 6.0. Statistical Innovations Inc..Google Scholar
Visser, I., Speekenbrink, M.. (2010). depmixS4: An R package for hidden Markov models. Journal of Statistical Software, 36, 1–21.CrossRefGoogle Scholar
Visser, I., Speekenbrink, M.. (2014). The happy marrige between latent and hidden Markov models. Comments on: Latent Markov models: A review of a general framework for the analysis of longitudinal data with covariates. Test, 23, 478–483.CrossRefGoogle Scholar
Visser, I., Speekenbrink, M.. (2022). Mixture and hidden Markov models with R, Springer.CrossRefGoogle Scholar
Wiggins, L.. (1973). Panel analysis: Latent probability models for attitude and behaviour processes, Elsevier.Google Scholar