No CrossRef data available.
Article contents
I. Borg and J. Lingoes. Multidimensional similarity structure analysis. New York/Berlin; Springer-Verlag, 1987, xii + 390 pp.
Review products
I. Borg and J. Lingoes. Multidimensional similarity structure analysis. New York/Berlin; Springer-Verlag, 1987, xii + 390 pp.
Published online by Cambridge University Press: 01 January 2025
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Reviews
- Information
- Copyright
- Copyright © 1990 The Psychometric Society
References
Borg, I. (1981). Anwendungsorientierte multidimensionale Skalierung [Applied multidimensional scaling], Berlin: Springer.CrossRefGoogle Scholar
Carroll, J. D., Arabie, P. (1980). Multidimensional scaling. In Rosenzweig, M. R., Porter, L. W. (Eds.), Annual review of psychology (pp. 607–649). Palo Alto, CA: Annual Reviews.Google Scholar
Carroll, J. D., Pruzansky, S., Kruskal, J. B. (1980). CANDELINC: A general approach to multidimensional analysis of multi-way arrays with linear constraints on the parameters. Psychometrika, 45, 3–24.CrossRefGoogle Scholar
Coxon, A. P. M. (1982). The user's guide to multidimensional scaling, Exeter, UK: Heinemann.Google Scholar
De Soete, G. (1982). Review of I. Borg, “Anwendungsorientierte multidimensionale Skalierung” [Applied multidimensional scaling]. Psychologica Belgica, 22, 184–185.Google Scholar
Heiser, W. J. (1981). Unfolding analysis of proximity data, Leiden: University of Leiden, Department of Data Theory.Google Scholar
Ramsay, J. O. (1982). Some statistical approaches to multidimensional scaling [With discussion]. Journal of the Royal Statistical Society, Series A, 145, 285–312.CrossRefGoogle Scholar
Shepard, R. N. (1972). A taxonomy of some principal types of data and of multidimensional methods for their analysis. In Shepard, R. N., Romney, A. K., Nerlove, S. B. (Eds.), Multidimensional scaling: Theory and applications in the behavioral sciences. Vol. 1 Theory (pp. 21–47). New York: Seminar Press.Google Scholar
Young, F. W. (1984). The general Euclidean model. In Law, H. G., Snyder, C. W. Jr., Hattie, J. A., McDonald, R. P. (Eds.), Research methods for multimode data analysis (pp. 440–469). New York: Praeger.Google Scholar