Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T09:28:23.988Z Has data issue: false hasContentIssue false

A Hierarchical Model for Accuracy and Choice on Standardized Tests

Published online by Cambridge University Press:  01 January 2025

Steven Andrew Culpepper*
Affiliation:
University of Illinois at Urbana-Champaign
James Joseph Balamuta
Affiliation:
University of Illinois at Urbana-Champaign
*
Correspondence should be made to Steven Andrew Culpepper, Department of Statistics, University of Illinois at Urbana-Champaign, 725 South Wright Street, Champaign, IL 61820, USA. Email: [email protected], [email protected]

Abstract

This paper assesses the psychometric value of allowing test-takers choice in standardized testing. New theoretical results examine the conditions where allowing choice improves score precision. A hierarchical framework is presented for jointly modeling the accuracy of cognitive responses and item choices. The statistical methodology is disseminated in the ‘cIRT’ R package. An ‘answer two, choose one’ (A2C1) test administration design is introduced to avoid challenges associated with nonignorable missing data. Experimental results suggest that the A2C1 design and payout structure encouraged subjects to choose items consistent with their cognitive trait levels. Substantively, the experimental data suggest that item choices yielded comparable information and discrimination ability as cognitive items. Given there are no clear guidelines for writing more or less discriminating items, one practical implication is that choice can serve as a mechanism to improve score precision.

Type
Original paper
Copyright
Copyright © 2015 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, J.. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational and Behavioral Statistics, 17(3), 251269. doi:10.3102/10769986017003251.CrossRefGoogle Scholar
Allen, N., Holland, P., Thayer, D.. (2005). Measuring the benefits of examinee-selected questions. Journal of Educational Measurement, 42, 2751. doi:10.1111/j.0022-0655.2005.00003.x.CrossRefGoogle Scholar
Azzalini, A., Dalla Valle, A.. (1996). The multivariate skew-normal distribution. Biometrika, 83(4), 715726. doi:10.1093/biomet/83.4.715.CrossRefGoogle Scholar
Béguin, A. A., Glas, C. A.. (2001). MCMC estimation and some model-fit analysis of multidimensional IRT models. Psychometrika, 66(4), 541561. doi:10.1007/BF02296195.CrossRefGoogle Scholar
Böckenholt, U.. (2001). Hierarchical modeling of paired comparison data. Psychological Methods, 6(1), 49. doi:10.1037/1082-989X.6.1.49.CrossRefGoogle ScholarPubMed
Böckenholt, U.. (2004). Comparative judgments as an alternative to ratings: Identifying the scale origin. Psychological Methods, 9(4), 453. doi:10.1037/1082-989X.9.4.453.CrossRefGoogle Scholar
Böckenholt, U.. (2006). Thurstonian-based analyses: Past, present, and future utilities. Psychometrika, 71(4), 615629. doi:10.1007/s11336-006-1598-5.CrossRefGoogle ScholarPubMed
Bradlow, E., Thomas, N.. (1998). Item response theory models applied to data allowing examinee choice. Journal of Educational and Behavioral Statistics, 23, 236243. doi:10.3102/10769986023003236.CrossRefGoogle Scholar
Bridgeman, B., Morgan, R., Wang, M-M. (1997). Choice among essay topics: Impact on performance and validity. Journal of Educational Measurement, 34(3), 273286. doi:10.1111/j.1745-3984.1997.tb00519.x.CrossRefGoogle Scholar
Brooks, S. P., Gelman, A.. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7(4), 434455.CrossRefGoogle Scholar
Brown, A., Maydeu-Olivares, A.. (2011). Item response modeling of forced-choice questionnaires. Educational and Psychological Measurement, 71(3), 460502. doi:10.1177/0013164410375112.CrossRefGoogle Scholar
Carmona, R.Indifference pricing: Theory and applications 2009 Princeton, NJ: Princeton University Press.Google Scholar
Cattelan, M. et al. (2012). Models for paired comparison data: A review with emphasis on dependent data. Statistical Science, 27(3), 412433. doi:10.1214/12-STS396.CrossRefGoogle Scholar
Coombs, C. H., Milholland, J. E., Womer, F. B.. (1956). The assessment of partial knowledge. Educational and Psychological Measurement, 16(1), 1337. doi:10.1177/001316445601600102.CrossRefGoogle Scholar
Croson, R.. (2005). The method of experimental economics. International Negotiation, 10, 131148. doi:10.1163/1571806054741100.CrossRefGoogle Scholar
Culpepper, S.A. (2015). Revisiting the 4-parameter item response model: Bayesian estimation and application. Psychometrika..Google Scholar
Eddelbuettel, D.Seamless R and C++ integration with Rcpp 2013 New York: Springerdoi:10.1007/978-1-4614-6868-4.CrossRefGoogle Scholar
Fox, J-PBayesian item response modeling 2010 New York: Springerdoi:10.1007/978-1-4419-0742-4.CrossRefGoogle Scholar
Guay, R.Purdue spatial visualization test 1976 West Layfette, IN: Purdue University.Google Scholar
Hakstian, A. R., Kansup, W.. (1975). A comparison of several methods of assessing partial knowledge in multiple choice tests: II Testing procedures. Journal of Educational Measurement, 12(4), 231239. doi:10.1111/j.1745-3984.1975.tb01024.x.CrossRefGoogle Scholar
Hontangas, P., Ponsado, V., Olea, J., Wise, S.. (2000). The choice of item difficulty in self-adapted testing. European Journal of Psychological Assessment, 16, 312. doi:10.1027//1015-5759.16.1.3.CrossRefGoogle Scholar
Kahneman, D.. (2003). Maps of bounded rationality: Psychology for behavioral economics. American Economic Review, 93, 14491475. doi:10.1257/000282803322655392.CrossRefGoogle Scholar
Kahneman, D., Knetsch, J. L., Thaler, R. H.. (1990). Experimental tests of the endowment effect and the Coase theorem. Journal of Political Economy, 98, 13251348. doi:10.1086/261737.CrossRefGoogle Scholar
Kahneman, D., Knetsch, J. L., Thaler, R. H.. (1991). Anomalies: The endowment effect, loss aversion, and status quo bias. The Journal of Economic Perspectives, 5, 193206. doi:10.1257/jep.5.1.193.CrossRefGoogle Scholar
Lukhele, R., Thissen, D., Wainer, H.. (1994). On the relative value of multiple-choice, constructed response, and examinee-selected items on two achievement tests. Journal of Educational Measurement, 31, 234250. doi:10.1111/j.1745-3984.1994.tb00445.x.CrossRefGoogle Scholar
Maeda, Y., Yoon, S.. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue spatial visualization tests: Visualization of rotations (PSVT:R). Educational Psychology Review, 25, 6994. doi:10.1007/s10648-012-9215-x.CrossRefGoogle Scholar
Maeda, Y., Yoon, S. Y., Kim-Kang, G., Imbrie, P.. (2013). Psychometric properties of the revised PSVT: R for measuring first year engineering students’ spatial ability. International Journal of Engineering Education, 29(3), 763776.Google Scholar
Maydeu-Olivares, A., Böckenholt, U.. (2005). Structural equation modeling of paired-comparison and ranking data. Psychological Methods, 10(3), 285. doi:10.1037/1082-989X.10.3.285.CrossRefGoogle ScholarPubMed
McFadden, D.. (2001). Economic choices. American Economic Review, 91, 351378. doi:10.1257/aer.91.3.351.CrossRefGoogle Scholar
Patz, R. J., Junker, B. W.. (1999). Applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses. Journal of Educational and Behavioral Statistics, 24(4), 342366. doi:10.3102/10769986024004342.CrossRefGoogle Scholar
Pitkin, A., Vispoel, W.. (2001). Differences between self-adapted and computerized adaptive tests: A meta-analysis. Journal of Educational Measurement, 38, 235247. doi:10.1111/j.1745-3984.2001.tb01125.x.CrossRefGoogle Scholar
Powers, D., Bennett, R.. (2000). Effects of allowing examinees to select questions on a test of divergent thinking. Applied Measurement in Education, 12, 257279. doi:10.1207/S15324818AME1203_3.CrossRefGoogle Scholar
Revuelta, J.. (2004). Estimating ability and item-selection strategy in self-adapted testing: A latent class approach. Journal of Educational and Behavioral Statistics, 29, 379396. doi:10.3102/10769986029004379.CrossRefGoogle Scholar
Rocklin, T.. (1994). Self-adapted testing. Applied Measurement in Education, 7, 314. doi:10.1207/s15324818ame0701_2.CrossRefGoogle Scholar
Rocklin, T., O’Donnell, A.. (1987). Self-adapted testing: A performance-improving variant of computerized adaptive testing. Journal of Educational Psychology, 79, 315319. doi:10.1037/0022-0663.79.3.315.CrossRefGoogle Scholar
Rocklin, T., O’Donnell, A., Holst, P.. (1995). Effects and underlying mechanisms of self-adapted testing. Journal of Educational Psychology, 87, 103116. doi:10.1037/0022-0663.87.1.103.CrossRefGoogle Scholar
Ross, S.An elementary introduction to mathematical finance 2011 3New York: Cambridge University Pressdoi:10.1017/CBO9780511921483.CrossRefGoogle Scholar
Rubin, D.. (1976). Inference and missing data. Biometrika, 63, 581592. doi:10.1093/biomet/63.3.581.CrossRefGoogle Scholar
Ryan, R. M., Deci, E. L.. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68. doi:10.1037/0003-066X.55.1.68.CrossRefGoogle ScholarPubMed
Schraw, G., Flowerday, T., Reisetter, M.. (1998). The role of choice in reader engagement. Journal of Educational Psychology, 90, 705714. doi:10.1037/0022-0663.90.4.705.CrossRefGoogle Scholar
Sinharay, S., Johnson, M. S., Stern, H. S.. (2006). Posterior predictive assessment of item response theory models. Applied Psychological Measurement, 30(4), 298321. doi:10.1177/0146621605285517.CrossRefGoogle Scholar
Thurstone, L. L.. (1927). A law of comparative judgment. Psychological Review, 34(4), 273. doi:10.1037/h0070288.CrossRefGoogle Scholar
Tsai, R-C. (2000). Remarks on the identifiability of Thurstonian ranking models: Case V, Case III, or neither?. Psychometrika, 65(2), 233240. doi:10.1007/BF02294376.CrossRefGoogle Scholar
Tsai, R-C. (2003). Remarks on the identifiability of Thurstonian paired comparison models under multiple judgment. Psychometrika, 68(3), 361372. doi:10.1007/BF02294732.CrossRefGoogle Scholar
Tsai, R-C, Böckenholt, U.. (2002). Two-level linear paired comparison models: Estimation and identifiability issues. Mathematical Social Sciences, 43(3), 429449. doi:10.1016/S0165-4896(02)00019-7.CrossRefGoogle Scholar
Tsai, R-C, Böckenholt, U.. (2006). Modelling intransitive preferences: A random-effects approach. Journal of Mathematical Psychology, 50(1), 114. doi:10.1016/j.jmp.2005.11.004.CrossRefGoogle Scholar
Tsai, R-C, Böckenholt, U.. (2008). On the importance of distinguishing between within-and between-subject effects in intransitive intertemporal choice. Journal of Mathematical Psychology, 52(1), 1020. doi:10.1016/j.jmp.2007.09.004.CrossRefGoogle Scholar
Tversky, A., Kahneman, D.. (1991). Loss aversion in riskless choice: A reference-dependent model. The Quarterly Journal of Economics, 106, 10391061. doi:10.2307/2937956.CrossRefGoogle Scholar
van der Linden, W. J.. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72(3), 287308. doi:10.1007/s11336-006-1478-z.CrossRefGoogle Scholar
Vispoel, W., Coffman, D.. (1994). Computerized-adaptive and self-adaptive music-listening tests: Psychometric features and motivational benefits. Applied Measurement in Education, 7, 2551. doi:10.1207/s15324818ame0701_4.CrossRefGoogle Scholar
Wainer, H.Uneducated guesses: Using evidence to uncover misguided education policies 2011 Princeton, NJ: Princeton University Pressdoi:10.1515/9781400839575.CrossRefGoogle Scholar
Wainer, H., Thissen, D.. (1994). On examinee choice in educational testing. Review of Educational Research, 64, 159195. doi:10.3102/00346543064001159.CrossRefGoogle Scholar
Wainer, H., Wang, X. B., Thissen, D.. (1994). How well can we compare scores on test forms that are constructed by examinees’ choice?. Journal of Educational Measurement, 31, 183199. doi:10.1111/j.1745-3984.1994.tb00442.x.CrossRefGoogle Scholar
Wang, W., Jin, K., Qiu, X., Wang, L.. (2012). Item response models for examinee-selected items. Journal of Educational Measurement, 49, 419445. doi:10.1111/j.1745-3984.2012.00184.x.CrossRefGoogle Scholar
Wang, X.B. (1992). Achieving equity in self-selected subsets of test items (Unpublished doctoral dissertation). University of Hawaii..Google Scholar
Wang, X. B., Wainer, H., Thissen, D.. (1995). On the viability of some untestable assumptions equating exams that allow examinee choice. Applied Measurement in Education, 8, 211225. doi:10.1207/s15324818ame0803_2.CrossRefGoogle Scholar
Wise, S.. (1994). Understanding self-adaptive testing: The perceived control hypothesis. Applied Measurement in Education, 7, 1524. doi:10.1207/s15324818ame0701_3.CrossRefGoogle Scholar
Wise, S., Plake, B., Johnson, P., Roos, L.. (1992). A comparison of self-adapted and computerized adaptive tests. Journal of Educational Measurement, 29, 329339. doi:10.1111/j.1745-3984.1992.tb00381.x.CrossRefGoogle Scholar
Yoon, S.Y. (2011). Psychometric properties of the Revised Purdue Spatial Visualization tests: Visualization of rotations (the revised PSVT-R) (Unpublished doctoral dissertation). Purdue University..Google Scholar