Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-08T09:55:12.333Z Has data issue: false hasContentIssue false

Extensions of Rasch's Multiplicative Poisson Model

Published online by Cambridge University Press:  01 January 2025

Margo G. H. Jansen*
Affiliation:
University of Groningen
Marijtje A. J. van Duijn
Affiliation:
University of Groningen
*
Requests for reprints should be sent to Margo G. H. Jansen, Department of Education, University of Groningen, Grote Rozenstraat 38, 9712 TJ Groningen, THE NETHERLANDS.

Abstract

Consideration will be given to a model developed by Rasch that assumes scores observed on some types of attainment tests can be regarded as realizations of a Poisson process. The parameter of the Poisson distribution is assumed to be a product of two other parameters, one pertaining to the ability of the subject and a second pertaining to the difficulty of the test. Rasch's model is expanded by assuming a prior distribution, with fixed but unknown parameters, for the subject parameters. The test parameters are considered fixed. Secondly, it will be shown how additional between- and within-subjects factors can be incorporated. Methods for testing the fit and estimating the parameters of the model will be discussed, and illustrated by empirical examples.

Type
Original Paper
Copyright
Copyright © 1992 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M., Stegun, I. A. (1964). Handbook of mathematical functions, Washington, DC: National Bureau of Standards.Google Scholar
Andersen, E. B., Madsen, M. (1977). Estimating the parameters of the latent population distribution. Psychometrika, 42, 357374.CrossRefGoogle Scholar
Baker, R. J., Nelder, J. A. (1978). The GLIM system, Release 3, generalized linear interactive modelling, Oxford: Numerical Algorithms Group.Google Scholar
Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 2951.CrossRefGoogle Scholar
Deely, J. J., Lindley, D. V. (1981). Bayes empirical Bayes. Journal of the American Statistical Association, 76, 833841.CrossRefGoogle Scholar
Engel, J. (1984). Models for response data showing extra-Poisson variation. Statistica Neerlandica, 38, 159167.CrossRefGoogle Scholar
Engel, J. (1987). The analysis of dependent count data. Unpublished doctoral dissertation, Agricultural University, Wageningen.Google Scholar
Fischer, G. H. (in press). On power series models and the specifically objective assessment of change in event frequencies. In J. C. Falmagne & J. P. Doignon (Eds.), Mathematical psychology: Current developments. New York: Springer Verlag.Google Scholar
Haberman, S. J. (1978). Analysis of qualitative data, New York: Academic Press.Google Scholar
Jansen, M. G. H. (1986). A Bayesian version of Rasch's multiplicative Poisson model for the number of errors on an achievement test. Journal of Educational Statistics, 11, 147160.Google Scholar
Jansen, M. G. H., Snijders, T. A. B. (1991). Comparison of Bayesian estimation procedures for two-way contingency tables without interaction. Statistica Neerlandica, 45, 5165.CrossRefGoogle Scholar
Leonard, T., Novick, M. R. (1986). Bayesian full rank marginalization for two-way contingency tables. Journal of Educational Statistics, 11, 3356.CrossRefGoogle Scholar
Lord, F. M., Novick, M. R. (1986). Statistical theories of mental test scores, Reading, MA: Addison-Wesley.Google Scholar
Maritz, J. S. (1970). Empirical Bayes methods, London: Methuen.Google Scholar
McCullagh, P., Nelder, J. A. (1989). Generalized linear models, London: Chapman and Hall.CrossRefGoogle Scholar
Owen, R. J. (1969). A Bayesian analysis of Rasch's multiplicative Poisson model (Research Bulletin 69-64), Princeton, NJ: Educational Testing Serivice.Google Scholar
Rasch, G. (1973). Two applications of the multiplicative Poisson models in road accidents statistics. Bulletin of the International Statiustical Institute (Proceedings of the 39th session, Vienna), 31–43.Google Scholar
Rasch, G. (1980). Probabilistic models for some intelligence and attainment tests, Chicago: The University of Chicago Press.Google Scholar
Rigdon, S. E., Tsutakawa, R. K. (1983). Parameter estimation in latent trait models. Psychometrika, 48, 567574.CrossRefGoogle Scholar
Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. Psychometrika, 47, 175186.CrossRefGoogle Scholar
van Duijn, M. A. J., Jansen, M. G. H. (1990). Empirical Bayes mixed-model analysis for count data, Groningen, The Netherlands: University of Groningen.Google Scholar