Published online by Cambridge University Press: 01 January 2025
We introduce two simple empirical approximate Bayes estimators (EABEs)— \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widetilde{d}_N (x)$$\end{document} and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widetilde\delta _N (x)$$\end{document}—for estimating domain scores under binomial and hypergeometric distributions, respectively. Both EABEs (derived from corresponding marginal distributions of observed test score x without relying on knowledge of prior domain score distributions) have been proven to hold Δ-asymptotic optimality in Robbins' sense of convergence in mean. We found that, where \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widetilde{d}^* _N$$\end{document} and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widetilde\delta ^* _N$$\end{document} are the monotonized versions of \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widetilde{d}_N$$\end{document} and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widetilde\delta _N$$\end{document} under Van Houwelingen's monotonization method, respectively, the convergence rate of the overall expected loss of Bayes risk in either \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widetilde{d}^* _N$$\end{document} or \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widetilde\delta ^* _N$$\end{document} depends on test length, sample size, and ratio of test length to size of domain items. In terms of conditional Bayes risk, \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widetilde{d}^* _N$$\end{document} and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widetilde\delta ^* _N$$\end{document} outperform their maximum likelihood counterparts over the middle range of domain scales. In terms of mean-squared error, we also found that: (a) given a unimodal prior distribution of domain scores, \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widetilde\delta ^* _N$$\end{document} performs better than both \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widetilde{d}^* _N$$\end{document} and a linear EBE of the beta-binomial model when domain item size is small or when test items reflect a high degree of heterogeneity; (b) \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widetilde{d}^* _N$$\end{document} performs as well as \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\widetilde\delta ^* _N$$\end{document} when prior distribution is bimodal and test items are homogeneous; and (c) the linear EBE is extremely robust when a large pool of homogeneous items plus a unimodal prior distribution exists.
The authors are indebted to both anonymous reviewers, especially Reviewer 2, and the Editor for their invaluable comments and suggestions. Thanks are also due to Yuan-Chin Chang and Chin-Fu Hsiao for their help with our simulation and programming work.