Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T10:16:05.906Z Has data issue: false hasContentIssue false

Dynamic GSCA (Generalized Structured Component Analysis) with Applications to the Analysis of Effective Connectivity in Functional Neuroimaging Data

Published online by Cambridge University Press:  01 January 2025

Kwanghee Jung*
Affiliation:
McGill University University of British Columbia
Yoshio Takane
Affiliation:
McGill University
Heungsun Hwang
Affiliation:
McGill University
Todd S. Woodward
Affiliation:
University of British Columbia
*
Requests for reprints should be sent to Kwanghee Jung, BC Mental Health and Addictions Research Institute, Department of Psychiatry, University of British Columbia, Child and Family Research Institute Building, Room A3-112, 938 West 28th Avenue, Vancouver, BC, Canada V5Z 4H4. E-mail: [email protected]

Abstract

We propose a new method of structural equation modeling (SEM) for longitudinal and time series data, named Dynamic GSCA (Generalized Structured Component Analysis). The proposed method extends the original GSCA by incorporating a multivariate autoregressive model to account for the dynamic nature of data taken over time. Dynamic GSCA also incorporates direct and modulating effects of input variables on specific latent variables and on connections between latent variables, respectively. An alternating least square (ALS) algorithm is developed for parameter estimation. An improved bootstrap method called a modified moving block bootstrap method is used to assess reliability of parameter estimates, which deals with time dependence between consecutive observations effectively. We analyze synthetic and real data to illustrate the feasibility of the proposed method.

Type
Original Paper
Copyright
Copyright © 2012 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdi, H. (2003) Least squares. In Lewis-Beck, M., Bryman, A., & Futing, T. (Eds.), Encyclopedia for research methods for the social sciences (pp. 559561). Thousand Oaks: Sage.Google Scholar
Bühlmann, P. (2002). Bootstraps for time series. Statistical Science, 17, 5272.CrossRefGoogle Scholar
de Leeuw, J., Young, F.W., & Takane, Y. (1976). Additive structure in qualitative data: an alternating least squares method with optimal scaling features. Psychometrika, 41, 471503.CrossRefGoogle Scholar
Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Philadelphia: SIAM.CrossRefGoogle Scholar
Friston, K.J. (1994). Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping, 2, 5678.CrossRefGoogle Scholar
Friston, K.J., Ashburner, J., Kiebel, S.J., Nichols, T.E., & Penny, W.D. (2007). Statistical parametric mapping: the analysis of functional brain images. London: Academic Press.CrossRefGoogle Scholar
Gates, K.M., Molenaar, P.C., Hillary, F.G., & Slobounov, S. (2011). Extended unified SEM approach for modeling event-related fMRI data. NeuroImage, 54, 11511158.CrossRefGoogle ScholarPubMed
Grady, C.L., Springer, M.V., Hongwanishkul, D., McIntosh, A.R., & Winocur, G. (2006). Age-related changes in brain activity across the adult lifespan. Journal of Cognitive Neuroscience, 18, 227241.CrossRefGoogle ScholarPubMed
Harville, D.A. (1997). Matrix algebra from a statistician’s perspective. New York: Springer.CrossRefGoogle Scholar
Huettel, S.A., Song, A.W., & McCarthy, G. (2004). Functional magnetic resonance imaging. Sunderland: Sinauer Associates.Google ScholarPubMed
Hwang, H., & Takane, Y. (2004). Generalized structured component analysis. Psychometrika, 69, 8199.CrossRefGoogle Scholar
Hwang, H., DeSarbo, S.W., & Takane, Y. (2007). Fuzzy clusterwise generalized structured component analysis. Psychometrika, 72, 181198.CrossRefGoogle Scholar
Hwang, H., Takane, Y., & Malhotra, N.K. (2007). Multilevel generalized structured component analysis. Behaviormetrika, 34, 95109.CrossRefGoogle Scholar
Hwang, H., Ho, R.M., & Lee, J. (2010). Generalized structured component analysis with latent interactions. Psychometrika, 75, 228242.CrossRefGoogle Scholar
Jöreskog, K.G. (1970). A general method for analysis of covariance structures. Biometrika, 57, 409426.CrossRefGoogle Scholar
Kiers, H.A.L., & Takane, Y. (1993). Constrained DEDICOM. Psychometrika, 58, 339355.CrossRefGoogle Scholar
Kim, J., Zhu, W., Chang, L., Bentler, P.M., & Ernst, T. (2007). Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Human Brain Mapping, 28, 8593.CrossRefGoogle ScholarPubMed
Lahiri, S.N. (2003). Resampling methods for dependent data. New York: Springer.CrossRefGoogle Scholar
Mulaik, S.A. (1972). The foundations of factor analysis. New York: McGraw-Hill.Google Scholar
Smith, S.M., Miller, K.L., Salimi-Khorshid, G., Webster, M., Beckmann, C.F., Nichols, T.E., Ramsey, J.D., & Woolrich, M.W. (2010). Network modeling methods for fMRI. NeuroImage, 54, 875891.CrossRefGoogle ScholarPubMed
Stephan, K.E., Kasper, L., Harrison, L.M., Daunizeau, J., den Ouden, H.E.M., Breakspear, M., & Friston, K.J. (2008). Nonlinear dynamic causal models for fMRI. NeuroImage, 42, 649662.CrossRefGoogle ScholarPubMed
Takane, Y. (2009). Symbolic computation in generalized structured component analysis (GSCA). The international psychometric society meeting, .Google Scholar
Takane, Y., Kiers, H.A.L., & de Leeuw, J. (1995). Component analysis with different constraints on different dimensions. Psychometrika, 60, 259280.CrossRefGoogle Scholar
ten Berge, J.M.F., & Nevels, K. (1977). A general solution to Mosier’s oblique Procrustes problem. Psychometrika, 42, 593600.CrossRefGoogle Scholar
Tucker, L.R., (1951). A method for synthesis of factor analysis studies (Personnel Research section Report No. 984). Washington: U.S. Department of the Army. .CrossRefGoogle Scholar
Wang, L., Li, Y., Metzak, P., He, Y., & Woodward, T.S. (2010). Age-related changes in topological patterns of large-scale brain functional networks during memory encoding and recognition. NeuroImage, 50, 862872.CrossRefGoogle ScholarPubMed
Wold, H. (1973). Nonlinear iterative partial least squares (NIPALS) modeling: some current developments. In Krishnaiah, P.R. Multivariate analysis (pp. 383487). New York: Academic Press.Google Scholar
Zhang, G., & Browne, M.W. (2010). Bootstrap standard error estimates in dynamic factor analysis. Multivariate Behavioral Research, 45, 453482.CrossRefGoogle ScholarPubMed