Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T14:21:40.526Z Has data issue: false hasContentIssue false

Continuous and Discrete Latent Structure Models for Item Response Data

Published online by Cambridge University Press:  01 January 2025

Edward H. Haertel*
Affiliation:
Standford University
*
Requests for reprints should be sent to Edward Haertel, School of Education, Stanford University, Stanford, California 94305-3096.

Abstract

Relations are examined between latent trait and latent class models for item response data. Conditions are given for the two-latent class and two-parameter normal ogive models to agree, and relations between their item parameters are presented. Generalizations are then made to continuous models with more than one latent trait and discrete models with more than two latent classes, and methods are presented for relating latent class models to factor models for dichotomized variables. Results are illustrated using data from the Law School Admission Test, previously analyzed by several authors.

Type
Original Paper
Copyright
Copyright © 1990 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

I thank Lee J. Cronbach for his careful reading of this manuscript. His numerous constructive suggestions improved the clarity of the presentation, adn helped me to clarify my own thinking on critical points. I also thank Ingram Olkin, David E. Wiley, anonymous reviewers, and the Editor for constructive suggestions. Finally, I thank the Law School Admission Council/Law School Admission Services, and especially Ms. Deborah L. Palser, for locating and permitting me to inspect copies of the LSAT items used in the illustrative data.

References

Aitkin, M. (1980). Discussion of Professor Bartholomew's paper. Journal of the Royal Statistical Soceity, Series B, 42, 312314.Google Scholar
Bartholomew, D. J. (1980). Factor analysis for categorical data. Journal of the Royal Statistical Society, Series B, 42, 293312.CrossRefGoogle Scholar
Bock, R. D., & Aitkin, M. (1981). Marginal maxiumum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n dichotomously sceored items. Psychometrika, 35, 179197.CrossRefGoogle Scholar
Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 532.CrossRefGoogle Scholar
Clogg, C. C. (1977). Unrestricted and restricted maximum likelihood latent structure analysis: A manual for users, University Park, PA: Pennsylvania State University, Population Issues Research Office.Google Scholar
Cressie, N., & Holland, P. W. (1983). Characterizing the manifest probabilities of latent trait models. Psychometrika, 48, 129141.CrossRefGoogle Scholar
de Leeuw, J., & Verhelst, N. (1986). Maximum likelihood estimation in generalized Rasch models. Journal of Educational Statistics, 11, 183196.CrossRefGoogle Scholar
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maxiumum likelihood froim incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 122.CrossRefGoogle Scholar
Everitt, B. S. (1984). A note on parameter estimation for Lazarsfeld's latent class model using the EM algorithm. Multivatiate Behavioral Research, 19, 7989.CrossRefGoogle Scholar
Goodman, L. A. (1974). The analysis of qualitative variables when some of the variables are unobservable. Part I—A modified latent structure approach. American Journal of Sociology, 79, 11791259.CrossRefGoogle Scholar
Goodman, L. A. (1979). On the estimation of parameters in latent structure analysisk. Psychometrika, 44, 123128.CrossRefGoogle Scholar
Green, B. F. Jr. (1952). Latent structure analysis. Journal of the American Statistical Association, 47, 7176.CrossRefGoogle Scholar
Haertel, E. H. (1980). Determining what is measured by multiple choice tests of reading comprehension. Unpublished doctoral dissertation, University of Chicago.Google Scholar
Haertel, E. H. (1984). An application of latent class models to assessment data. Applied Psychological Measurement, 8, 333346.CrossRefGoogle Scholar
Haertel, E. H. (1984). Detection of a skill dischotomy using standardized achievement test items. Journal of Educational Measurement, 21, 5972.CrossRefGoogle Scholar
Haertel, E. H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26, 301321.CrossRefGoogle Scholar
Hendrickson, A. E., & White, P. O. (1964). Promax: A quick method for rotation to oblique simple structure. British Jodurnal of Statistical Psychology, 17, 6570.CrossRefGoogle Scholar
Karlin, S., & Studden, W. J. (1966). Tchebysheff systems: With applications to analysis and statistics, New York: Wiley.Google Scholar
Lazarsfeld, P. F. (1950a). The logical and mathematical foundation of latent structure analysis. In Stouffer, S. A., Guttman, L., Suchman, E. A., Lazarsfeld, P. F., Star, S. A., & Clausen, J. A. (Eds.), Studies in social psychology in World War II: Vol.4. Measurement and prediction (pp. 362412). Princeton, NJ: Princeton University Press.Google Scholar
Lazarsfeld, P. F. (1950b). Some latent stuctures. In Stouffer, S. A., Guttman, L., Suchamn, E. A., Lazarsfeld, P. F., & Star, S. A., Clausen, J. A. (Eds.), Studies in social psychology in World War II: Vol. 4. Measurement and prediction (pp. 413472). Princeton, NJ: Princeton University Press.Google Scholar
Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis, New York: Houghton Miffin.Google Scholar
Lord, F. M. (1980). Applications of item response theory to practical testing problems, Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Macready, G. B., & Dayton, C. M. (1977). The use of probabilistic models in the assessment of mastery. Journal of Educational Statistics, 2, 99120.CrossRefGoogle Scholar
Macready, G. B., & Dayton, C. M. (1980). The nature and use of state mastery models. Applied Psychological Measurement, 4, 493516.CrossRefGoogle Scholar
Masters, G. N. (1985). A comparison of latent trait and latent class analyses of likert-type data. Psychometrika, 50, 6982.CrossRefGoogle Scholar
Meehl, P. E., & Golden, R. R. (1982). Taxometric methods. In Kendall, P. C., Butcher, J. N. (Eds.), Handbook of research methods in clinical psychology (pp. 127181). New York: John Wiley & Sons.Google Scholar
Mislevy, R. J. (1986). Recent developments in the factor analysis of categorical variables. Journal of Educational. Statistics, 11, 331.CrossRefGoogle Scholar
Molenaar, I. W. (1981). On Wilcox's latent structure model for guessing. Brisith Journal of Mathematical and Statistical Psychology, 34, 224228.CrossRefGoogle Scholar
Mooijaart, A. (1983). Two kinds of factor analysis for ordered categorical variables. Multivariate Behavioral Research, 18, 423441.CrossRefGoogle ScholarPubMed
Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551560.CrossRefGoogle Scholar
Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115132.CrossRefGoogle Scholar
Stroud, A. H., & Sechrest, D. (1966). Gaussian quadrature formulas, Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Takane, Y., & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393408.CrossRefGoogle Scholar
Thurstone, L. L. (1927). Psychophysical analysis. American Journal of Psychology, 38, 368389. (Reprinted in L. L. Thurstone, The measurement of values (pp. 19-38). Chicago: University of Chicago Press, 1959)CrossRefGoogle Scholar