Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T09:55:55.415Z Has data issue: false hasContentIssue false

Building an Identifiable Latent Class Model with Covariate Effects on Underlying and Measured Variables

Published online by Cambridge University Press:  01 January 2025

Guan-Hua Huang*
Affiliation:
University of Wisconsin, Madison, Wisconsin
Karen Bandeen-Roche
Affiliation:
The Johns Hopkins University, Baltimore, Maryland
*
Requests for reprints should be sent to Guan-Hua Huang, Institute of Statistics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 30050, TAIWAN

Abstract

In recent years, latent class models have proven useful for analyzing relationships between measured multiple indicators and covariates of interest. Such models summarize shared features of the multiple indicators as an underlying categorical variable, and the indicators' substantive associations with predictors are built directly and indirectly in unique model parameters. In this paper, we provide a detailed study on the theory and application of building models that allow mediated relationships between primary predictors and latent class membership, but that also allow direct effects of secondary covariates on the indicators themselves. Theory for model identification is developed. We detail an Expectation-Maximization algorithm for parameter estimation, standard error calculation, and convergent properties. Comparison of the proposed model with models underlying existing latent class modeling software is provided. A detailed analysis of how visual impairments affect older persons' functioning requiring distance vision is used for illustration.

Type
Theory And Methods
Copyright
Copyright © 2004 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by National Institute on Aging (NIA) Program Project P01-AG-10184-03 and National Institutes of Mental Health grant R01-MH-56639-01A1. Dr. Bandeen-Roche is a Brookdale National Fellow. The authors wish to thank Drs. Gary Rubin and Sheila West for kindly making the Salisbury Eye Evaluation data available. We also thank the Editor, the Associate Editor, and three referees for their valuable comments.

References

Agresti, A. (1984). Analysis of Categorical Data. New York: John Wiley and SonsGoogle Scholar
Akaike, H. (1987). Factor analysis and AIC. Psychometrika, 52, 317332CrossRefGoogle Scholar
Baker, S.G., & Laird, N.M. (1988). Regression analysis for categorical variables with outcome subject to nonignorable nonresponse. Journal of the American Statistical Association, 83, 6269CrossRefGoogle Scholar
Bandeen-Roche, K., Huang, G.H., Munoz, B., & Rubin, G.S. (1999). Determination of risk factor associations with questionnaire outcomes: A methods case study. American Journal of Epidemiology, 150, 11651178CrossRefGoogle ScholarPubMed
Bandeen-Roche, K., Miglioretti, D.L., Zeger, S.L., & Rathouz, P.J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association, 92, 13751386CrossRefGoogle Scholar
Bollen, K. (1989). Structural Equations with Latent Variables. New York: John Wiley and SonsCrossRefGoogle Scholar
Clogg, C.C., Goodman, L.A. (1984). Latent structure analysis of a set of multidimensional contingency tables. Journal of the American Statistical Association, 79, 762771CrossRefGoogle Scholar
Clogg, C.C., & Goodman, L.A. (1985). Simultaneous latent structure analysis in several groups. In Tuma, N.B. (Eds.), Sociological Methodology 1985 (pp. 81110). San Francisco: Jossey-BassGoogle Scholar
Dayton, C.M., & Macready, G.B. (1988). Concomitant-variable latent-class models. Journal of the American Statistical Association, 83, 173178CrossRefGoogle Scholar
Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 138CrossRefGoogle Scholar
Eaton, W. W., Dryman, A., Sorenson, A., & McCutcheon, A. (1989). DSM-III major depressive disorder in the community—A latent class analysis of data from the NIMH epidemiologic catchment-area program. British Journal of Psychiatry, 155, 4854CrossRefGoogle Scholar
Efron, B., Hinkley, D.V. (1978). Assessing the acuracy of the maximum likelihood estimator: Observed versus expected Fisher information. Biometrika, 65, 457487CrossRefGoogle Scholar
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189189CrossRefGoogle Scholar
Formann, A.K. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematical and Statistical Psychology, 38, 87111CrossRefGoogle Scholar
Formann, A.K. (1992). Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, 87, 476486CrossRefGoogle Scholar
Garrett, E.S., & Zeger, S.L. (2000). Latent class model diagnosis. Biometrics, 56, 10551067CrossRefGoogle ScholarPubMed
Goldberg, D. (1972). GHQ The Selection of Psychiatric Illness by Questionnaire. London: Oxford University PressGoogle Scholar
Goodman, L.A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215231CrossRefGoogle Scholar
Graybill, F.A. (1969). Introduction to Matrices with Applications in Statistic. Belmont, CA: WadsworthGoogle Scholar
Green, B.F. (1951). A general solution of the latent class model of latent structure analysis and latent profile analysis. Psychometrika, 16, 151166CrossRefGoogle Scholar
Haberman, S.J. (1974). Log-linear models for frequency tables derived by indirect observation: Maximum likelihood equations. Annals of Statistics, 2, 911924CrossRefGoogle Scholar
Haberman, S.J. (1979). Analysis of Qualitative Data. Vol. 2: New Developments. New York: Academic PressGoogle Scholar
Hagenaars, J.A. (1993). Loglinear Models with Latent Variables. Newbury Park, CA: SageCrossRefGoogle Scholar
Hambleton, R.K., Swaminathan, H., & Rogers, H.J. (1991). Fundamentals of Item Response Theory. Newbury Park, CA: SageGoogle Scholar
Huang, G.H., Bandeen-Roche, K., & Rubin, G.S. (2002). Building marginal models for multiple ordinal measurements. Applied Statistics, 51, 3757Google Scholar
Hudziak, J.J., Heath, A.C., Madden, P.F., Reich, W., Bucholz, K.K., Slutske, W., Bierut, L.J., Neuman, R.J., & Todd, R.D. (1998). Latent class and factor analysis of DSM-IV ADHD: A twin study of female adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 37, 848857CrossRefGoogle ScholarPubMed
Jette, A.M., Branch, L.G. (1985). Impairment and disability in the aged. J Chronic Dis, 38, 5965CrossRefGoogle ScholarPubMed
Jöreskog, K.G., & Goldberger, A.S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable. Journal of the American Statistical Association, 70, 631639Google Scholar
Katz, S., Ford, A.B., Moskowitz, R.W., Jackson, B.A., & Jaffer, M.W. (1963). Studies of illness in the age. The index of ADL: A standardized measure of biological and psychosocial function. Journal of the American Medical Association, 185, 914918CrossRefGoogle Scholar
Lange, K. (1995). A gradient algorithm locally equivalent to the EM algorithm. Journal of the Royal Statistical Society, Series B, 57, 425437CrossRefGoogle Scholar
Lazarsfeld, P.F., & Henry, N.W. (1968). Latent Structure Analysis. New York: Houghton-MifflinGoogle Scholar
Legler, J.M., & Ryan, L.M. (1997). Latent variable models for teratogenesis using multiple binary outcomes. Journal of the American Statistical Association, 92, 1320CrossRefGoogle Scholar
Little, R.J.A., & Rubin, D.B. (1987). Statistical Analysis with Missing Data. New York: John Wiley and SonsGoogle Scholar
Louis, T.A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B, 44, 226233CrossRefGoogle Scholar
Magidson, J., & Vermunt, J.K. (2001). Latent class factor and cluster models, bi-plots, and related graphical displays. In Stolzenberg, R.M. (Eds.), Sociological Methodology 2001 (pp. 223264). Boston: BlackwellGoogle Scholar
Mangione, C.M., Phillips, R.S., Seddon, J.M., Lawrence, M.G., Cook, E.F., Dailey, R., & Goldman, L. (1992). Development of the “activities of daily vision” scale: A measurement of visual functional status. Medical Care, 30, 11111126CrossRefGoogle Scholar
McCullagh, P., Nelder, J.A. (1989). Generalized Linear Models 2nd edition, London: Chapman and HallCrossRefGoogle Scholar
McCutcheon, A. C. (1987). Latent Class Analysis. Beverly Hills, CA: SageCrossRefGoogle Scholar
McHugh, R.B. (1956). Efficient estimation and local identification in latent class analysis. Psychometrika, 21, 331347CrossRefGoogle Scholar
McLachlan, G.J., & Krishnan, T. (1996). The EM Algorithm and Extensions. New York: John Wiley and SonsGoogle Scholar
Melton, B., Liang, K.Y., & Pulver, A.E. (1994). Extended latent class approach to the study of familial/sporadic forms of a disease: Its application to the study of the heterogeneity of schizophrenia. Genetic Epidemiology, 11, 311327CrossRefGoogle Scholar
Moustaki, I. (1996). A latent trait and a latent class model for mixed observed variables. British Journal of Mathematical and Statistical Psychology, 49, 313334CrossRefGoogle Scholar
Muthén, B. (1983). Latent variable structural equation modeling with categorical data. Journal of Econometrics, 22, 4365CrossRefGoogle Scholar
Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical and continuous latent variable indicators. Psychometrika, 49, 115132CrossRefGoogle Scholar
Muthén, L.K., & Muthén, B.O. (1998). Mplus User's Guide. Los Angeles, CA: Muthén & MuthénGoogle Scholar
Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using EM algorithm. Biometrics, 55, 463469CrossRefGoogle ScholarPubMed
Neuman, R.J., Heath, A., Reich, W., Bucholz, K.K., Madden, P.A.F., Sun, L., Todd, R.D., & Hudziak, J.J. (2001). Latent class analysis of ADHD and comorbid symptoms in a population sample of adolescent female twins. Journal of Child Psychology and Psychiatry and Allied Disciplines, 42, 933942CrossRefGoogle Scholar
Piantadosi, S. (1997). Clinical Trials: A Methodologic Perspective. New York: John Wiley and SonsGoogle Scholar
Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests. Chicago: University of Chicago PressGoogle Scholar
Roeder, K., Lynch, K.G., & Nagin, D.S. (1999). Modeling uncertainty in latent class membership: A case study in criminology. Journal of the American Statistical Association, 94, 766776CrossRefGoogle Scholar
Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271282CrossRefGoogle Scholar
Rost, J. (1991). A logistic mixture distribution model for polychotomous item responses. British Journal of Mathematical and Statistical Psychology, 44, 7592CrossRefGoogle Scholar
Rubin, G.S., Bandeen-Roche, K., Huang, G.H., Munoz, B., Schein, O.D., Fried, L.P., & West, S.K. (2001). The association of multiple visual impairments with self-reported visual disability: SEE project. Investigative Ophthalmology and Visual Science, 42, 6472Google ScholarPubMed
Rubin, G.S., West, S.K., Munoz, B., Bandeen-Roche, K., Zeger, S.L., Schein, O., & Fried, L.P. (1997). A comprehensive assessment of visual impairment in an older American population: SEE study. Investigative Ophthalmology and Visual Science, 38, 557568Google Scholar
Sammel, M.D., Ryan, L.M., & Legler, J.M. (1997). Latent variable models for mixed discrete and continuous outcomes. Journal of the Royal Statistical Society, Series B, 59, 667678CrossRefGoogle Scholar
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461464CrossRefGoogle Scholar
Statistical Sciences, Inc. (1995). S-PLUS User's Manual, Version 3.3 for Windows. Seattle: Statistical Sciences, Inc.Google Scholar
Sullivan, P.F., Kessler, R.C., & Kendler, K.S. (1998). Latent class analysis of lifetime depressive symptoms in national comorbidity survey. American Journal of Psychiatry, 155, 13981406CrossRefGoogle ScholarPubMed
Uebersax, J. (1993). Statistical modeling of expert ratings on medical treatment appropriateness. Journal of the American Statistical Association, 88, 421427CrossRefGoogle Scholar
Valbuena, M., Bandeen-Roche, K., Rubin, G.S., Munoz, B., & West, S.K.SEE Project Team (1999). Self-reported assessment of visual functioning in a population based setting. Investigative Ophthalmology and Visual Science, 40, 280288Google Scholar
Van der Heijden, P.G.M., Dessens, J., & Böckenholt, U. (1996). Estimating the concomitant-variable latent-class model with the EM algorithm. Journal of Educational and Behavioral Statistics, 21, 215229CrossRefGoogle Scholar
Vermunt, J.K. (1996). Log-linear Event History Analysis: A General Approach with Missing Data, Unobserved Heterogeneity, and Latent Variables. Tilburg: Tilburg University PressGoogle Scholar
Vermunt, J.K., & Magidson, J. (2000). Latent GOLD 2.0 User's Guide. Belmont, MA: Statistical Innovations Inc.Google Scholar
West, S.K., Munoz, B., Rubin, G.S., Schein, O.D., Bandeen-Roche, K., Zeger, S., German, P.S., & Fried, L.P. (1997). Function and visual impairment in a population-based study of older adults: SEE project. Investigative Ophthalmology and Visual Science, 38, 7282Google Scholar
Wu, C.F. (1983). On the convergence properties of the EM algorithm. Annals of Statistics, 11, 95103CrossRefGoogle Scholar