Hostname: page-component-5f56664f6-6wzj7 Total loading time: 0 Render date: 2025-05-07T19:05:46.871Z Has data issue: false hasContentIssue false

Bayesian Adaptive Lasso for Detecting Item–Trait Relationship and Differential Item Functioning in Multidimensional Item Response Theory Models

Published online by Cambridge University Press:  01 January 2025

Na Shan*
Affiliation:
Northeast Normal University
Ping-Feng Xu
Affiliation:
Northeast Normal University Shanghai Zhangjiang Institute of Mathematics
*
Correspondence should bemade to Na Shan, School of Psychology&Key Laboratory of Applied Statistics of MOE, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, China. Email: [email protected]

Abstract

In multidimensional tests, the identification of latent traits measured by each item is crucial. In addition to item–trait relationship, differential item functioning (DIF) is routinely evaluated to ensure valid comparison among different groups. The two problems are investigated separately in the literature. This paper uses a unified framework for detecting item–trait relationship and DIF in multidimensional item response theory (MIRT) models. By incorporating DIF effects in MIRT models, these problems can be considered as variable selection for latent/observed variables and their interactions. A Bayesian adaptive Lasso procedure is developed for variable selection, in which item–trait relationship and DIF effects can be obtained simultaneously. Simulation studies show the performance of our method for parameter estimation, the recovery of item–trait relationship and the detection of DIF effects. An application is presented using data from the Eysenck Personality Questionnaire.

Type
Original Research
Copyright
© 2024 The Author(s), under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alhamzawi, R., Yu, K., Benoit, D. F. (2012). Bayesian adaptive Lasso quantile regression. Statistical Modelling, 12(3), 279297.CrossRefGoogle Scholar
Asparouhov, T., Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397438.CrossRefGoogle Scholar
Bauer, D. J. (2017). A more general model for testing measurement invariance and differential item functioning. Psychological Methods, 22(3), 507526.CrossRefGoogle ScholarPubMed
Bauer, D. J., Belzak, W. C. M., Cole, V. T. (2020). Simplifying the assessment of measurement invariance over multiple background variables: Using regularized moderated nonlinear factor analysis to detect differential item functioning. Structural Equation Modeling: A Multidisciplinary Journal, 27(1), 4355.CrossRefGoogle ScholarPubMed
Béguin, A. A., Glas, C. A. W. (2001). MCMC estimation and some model-fit analysis of multidimensional IRT models. Psychometrika, 66(4), 541561.CrossRefGoogle Scholar
Belzak, W. C. M., Bauer, D. J. (2020). Improving the assessment of measurement invariance: Using regularization to select anchor items and identify differential item functioning. Psychological Methods, 25(6), 673690.CrossRefGoogle ScholarPubMed
Bock, R. D., Gibbons, R., Muraki, E. (1988). Full-information item factor analysis. Applied Psychological Measurement, 12(3), 261280.CrossRefGoogle Scholar
Brandt, H., Chen, S. M., & Bauer, D. J. (2023). Bayesian penalty methods for evaluating measurement invariance in moderated nonlinear factor analysis. Psychological Methods. https://doi.org/10.1037/met0000552.CrossRefGoogle Scholar
Browne, M. W., Cudeck, R. (1989). Single sample cross-validation indices for covariance structures. Multivariate Behavioral Research, 24(4), 445455.CrossRefGoogle ScholarPubMed
Buecker, S., Maes, M., Denissen, J. J. A., Luhmann, M. (2020). Loneliness and the big five personality traits: A meta-analysis. European Journal of Personality, 34, 828.CrossRefGoogle Scholar
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1–32. https://doi.org/10.18637/jss.v076.i01.CrossRefGoogle Scholar
Chen, J. S. (2020). A partially confirmatory approach to the multidimensional item response theory with the Bayesian Lasso. Psychometrika, 85(3), 738774.CrossRefGoogle Scholar
Chen, J. S., Guo, Z. H., Zhang, L. J., Pan, J. H. (2021). A partially confirmatory approach to scale development with the Bayesian Lasso. Psychological Methods, 26(2), 210235.CrossRefGoogle Scholar
Chen, S. M., Bauer, D. J., Belzak, W. M., Brandt, H. (2022). Advantages of spike and slab priors for detecting differential item functioning relative to other Bayesian regularizing priors and frequentist Lasso. Structural Equation Modeling: A Multidisciplinary Journal, 29(1), 122139.CrossRefGoogle Scholar
da Silva, M. A., Liu, R., Huggins-Manley, A. C., Bazán, J. L. (2019). Incorporating the Q-Matrix into multidimensional item response theory models. Educational and Psychological Measurement, 79(4), 665687.CrossRefGoogle ScholarPubMed
Dwyer, D. B., Falkai, P., Koutsouleris, N. (2018). Machine learning approaches for clinical psychology and psychiatry. Annual Review of Clinical Psychology, 14, 91118.CrossRefGoogle ScholarPubMed
Epskamp, S., Fried, E. I. (2018). A tutorial on regularized partial correlation networks. Psychological Methods, 23(4), 617634.CrossRefGoogle ScholarPubMed
Eysenck, S., Barrett, P. (2013). Re-introduction to cross-cultural studies of the EPQ. Personality and Individual Differences, 54(4), 485489.CrossRefGoogle Scholar
Fan, J., Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 13481360.CrossRefGoogle Scholar
Feng, X. N., Wu, H. T., Song, X. Y. (2017). Bayesian adaptive Lasso for ordinal regression with latent variables. Sociological Methods and Research, 46(4), 926953.CrossRefGoogle Scholar
Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 1(3), 515534.CrossRefGoogle Scholar
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer.Google Scholar
Huang, P. H. (2018). A penalized likelihood method for multi-group structural equation modelling. British Journal of Mathematical and Statistical Psychology, 71(3), 499522.CrossRefGoogle ScholarPubMed
Huang, P. H., Chen, H., Weng, L. J. (2017). A penalized likelihood method for structural equation modeling. Psychometrika, 82(2), 329354.CrossRefGoogle ScholarPubMed
Jacobucci, R., Grimm, K. J., Mcardle, J. J. (2016). Regularized structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 23(4), 555566.CrossRefGoogle ScholarPubMed
Janssen, R., De Boeck, P. (1999). Confirmatory analyses of componential test structure using multidimensional item response theory. Multivariate Behavioral Research, 34(2), 245268.CrossRefGoogle ScholarPubMed
Jin, K. Y., Wang, W. C. (2014). Item response theory models for performance decline during testing. Journal of Educational Measurement, 51(2), 178200.CrossRefGoogle Scholar
Kim, J., Oshima, T. C. (2013). Effect of multiple testing adjustment in differential item functioning detection. Educational and Psychological Measurement, 73(3), 458470.CrossRefGoogle Scholar
Kline, P. (1986). A handbook of test construction: Introduction to psychometric design. Methuen.Google Scholar
Lee, S., Bulut, O., Suh, Y. (2017). Multidimensional extension of multiple indicators multiple causes models to detect DIF. Educational and Psychological Measurement, 77(4), 545569.CrossRefGoogle ScholarPubMed
Leng, C., Tran, M. N., Nott, D. (2014). Bayesian adaptive Lasso. Annals of the Institute of Statistical Mathematics, 66(2), 221244.CrossRefGoogle Scholar
Lewandowski, D., Kurowicka, D., Joe, H. (2009). Generating random correlation matrices based on vines and extended onion method. Journal of Multivariate Analysis, 100(9), 19892001.CrossRefGoogle Scholar
Magis, D., Tuerlinckx, F., De Boeck, P. (2015). Detection of differential item functioning using the Lasso approach. Journal of Educational and Behavioral Statistics, 40(2), 111135.CrossRefGoogle Scholar
Mazor, K. M., Hambleton, R. K., Clauser, B. E. (1998). Multidimensional DIF analyses: The effects of matching on unidimensional subtest scores. Applied Psychological Measurement, 22(4), 357367.CrossRefGoogle Scholar
Mckinley, R. (1989). Confirmatory analysis of test structure using multidimensional item response theory. Technical Report No. RR-89-31. Educational Testing Service.CrossRefGoogle Scholar
Millsap, R. E., Everson, H. T. (1993). Methodology review: Statistical approaches for assessing measurement bias. Applied Psychological Measurement, 17(4), 297334.CrossRefGoogle Scholar
Oshima, T. C., Raju, N. S., Flowers, C. P. (1997). Development and demonstration of multidimensional IRT-based internal measures of differential functioning of items and tests. Journal of Educational Measurement, 34(3), 253272.CrossRefGoogle Scholar
Pan, J., Ip, E. H., Dubé, L. (2017). An alternative to post hoc model modification in confirmatory factor analysis: The Bayesian Lasso. Psychological Methods, 22(4), 687704.CrossRefGoogle ScholarPubMed
Park, T., Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association, 103(482), 681686.CrossRefGoogle Scholar
Plummer, M. (2017). Jags version 4.3.0 user manual. https://sourceforge.net/projects/mcmc-jags/files/Manuals/4.x/.Google Scholar
Polson, N. G., Sokolov, V. (2019). Bayesian regularization: From Tikhonov to horseshoe. WIREs Computational Statistics, 11.CrossRefGoogle Scholar
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. https://www.R-project.org.Google Scholar
Reckase, M. D. (2009). Multidimensional item response theory, Springer.CrossRefGoogle Scholar
Schauberger, G., Mair, P. (2020). A regularization approach for the detection of differential item functioning in generalized partial credit models. Behavior Research Methods, 52(1), 279294.CrossRefGoogle ScholarPubMed
Serang, S., Jacobucci, R., Brimhall, K. C., Grimm, K. J. (2017). Exploratory mediation analysis via regularization. Structural Equation Modeling: A Multidisciplinary Journal, 24(5), 733744.CrossRefGoogle ScholarPubMed
Stan Development Team. (2023). RStan: The R interface to Stan [R package version 2.21.8]. http://mc-stan.org/.Google Scholar
Stout, W., Li, H., Nandakumar, R., Bolt, D. (1997). MULTISIB - a procedure to investigate DIF when a test is intentionally multidimensional. Applied Psychological Measurement, 21(3), 195213.CrossRefGoogle Scholar
Suh, Y., Cho, S. J. (2014). Chi-square difference tests for detecting functioning in a multidimensional IRT model: A Monte Carlo study. Applied Psychological Measurement, 38(5), 359375.CrossRefGoogle Scholar
Sun, J., Chen, Y., Liu, J., Ying, Z., Xin, T. (2016). Latent variable selection for multidimensional item response theory models via L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_ {1}$$\end{document} regularization. Psychometrika, 81(4), 921939.CrossRefGoogle Scholar
Teresi, J. A., Ramirez, M., Lai, J., Silver, S. (2008). Occurrences and sources of differential item functioning (DIF) in patient-reported outcome measures: Description of DIF methods, and review of measures of depression, quality of life and general health. Psychology Science, 50(4), 538612.Google ScholarPubMed
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267288.CrossRefGoogle Scholar
Tibshirani, R., Friedman, J., Hastie, T., Narasimhan, B., Simon, N., & Qian, J. (2021). glmnet: Lasso and elastic-net regularized generalized linear models. https://www.rdocumentation.org/packages/glmnet/versions/4.1-3.Google Scholar
Tutz, G., Schauberger, G. (2015). A penalty approach to differential item functioning in Rasch models. Psychometrika, 80(1), 2143.CrossRefGoogle ScholarPubMed
Wang, C., Zhu, R. Y., Xu, G. J. (2023). Using Lasso and adaptive Lasso to identify DIF in multidimensional 2PL models. Multivariate Behavioral Research, 58(2), 387407.CrossRefGoogle ScholarPubMed
Wellner, J., Zhang, T. (2012). Introduction to the special issue on sparsity and regularization methods. Statistical Science, 27(4), 447449.CrossRefGoogle Scholar
Woods, C. M. (2009). Empirical selection of anchors for tests of differential item functioning. Applied Psychological Measurement, 33(1), 4257.CrossRefGoogle Scholar
Xu, P. F., Shang, L., Zheng, Q. Z., Shan, N., Tang, M. L. (2022). Latent variable selection in multidimensional item response theory models using the expectation model selection algorithm. British Journal of Mathematical and Statistical Psychology, 75(2), 363394.CrossRefGoogle ScholarPubMed
Zhang, C. H. (2010). Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics, 38(2), 894942.CrossRefGoogle Scholar
Zhang, S., Chen, Y. (2022). Computation for latent variable model estimation: A unified stochastic proximal framework. Psychometrika, 87(4), 14731502.CrossRefGoogle ScholarPubMed
Zou, H. (2006). The adaptive Lasso and its oracle properties. Journal of the American Statistical Association, 101(476), 14181429.CrossRefGoogle Scholar