Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-07T13:23:45.989Z Has data issue: false hasContentIssue false

Average Effects Based on Regressions with a Logarithmic Link Function: A New Approach with Stochastic Covariates

Published online by Cambridge University Press:  01 January 2025

Christoph Kiefer*
Affiliation:
RWTH Aachen University
Axel Mayer
Affiliation:
RWTH Aachen University
*
Correspondence should be made to Christoph Kiefer, Institute of Psychology, RWTHAachen University, Jägerstraße 17/19, 52066 Aachen, Germany. Email: [email protected]

Abstract

Researchers often use regressions with a logarithmic link function to evaluate the effects of a treatment on a count variable. In order to judge the average effectiveness of the treatment on the original count scale, they compute average treatment effects, which are defined as the average difference between the expected outcomes under treatment and under control. Current practice is to evaluate the expected differences at every observation and use the sample mean of these differences as a point estimate of the average effect. The standard error for this average effect estimate is based on the implicit assumption that covariate values are fixed, i.e., do not vary across different samples. In this paper, we present a new way of analytically computing average effects based on regressions with log link using stochastic covariates and develop new formulas to obtain standard errors for the average effect. In a simulation study, we evaluate the statistical performance of our new estimator and compare it with the traditional approach. Our findings suggest that the new approach gives unbiased effect estimates and standard errors and outperforms the traditional approach when strong interaction and/or a skewed covariate is present.

Type
Original Paper
Copyright
Copyright © 2019 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11336-018-09654-1) contains supplementary material, which is available to authorized users.

References

Agresti, A. (2007). An introduction to categorical data analysis, 2Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Basu, A., Rathouz, P. J. (2005). Estimating marginal and incremental effects on health outcomes using flexible link and variance function models. Biostatistics, 6(1), 93109.CrossRefGoogle ScholarPubMed
Boos, D. D., Stefanski, L. A. (2013). Essential statistical inference—Theory and methods, New York, NY: Springer.CrossRefGoogle Scholar
Chen, X. (2006). The adjustment of random baseline measurements in treatment effect estimation. Journal of Statistical Planning and Inference, 136, 41614175.CrossRefGoogle Scholar
Collins, L. M., Schafer, J. L., Kam, C. M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6(4), 330351.CrossRefGoogle ScholarPubMed
Coxe, S., West, S. G., Aiken, L. S. (2009). The analysis of count data: A gentle introduction to Poisson regression and its alternatives. Journal of Personality Assessment, 91(2), 121136.CrossRefGoogle Scholar
Crager, M. R. (1987). Analysis of covariance in parallel-group clinical trials with pretreatment baselines. Biometrics, 43, 895901.CrossRefGoogle ScholarPubMed
Dowd, B. E., Greene, W. H., Norton, E. C. (2014). Computation of standard errors. Health Services Research, 49(2), 731750.CrossRefGoogle ScholarPubMed
Gail, M. H., Wieand, S., Piantadosi, S. (1984). Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika, 71, 431444.CrossRefGoogle Scholar
Gardner, W., Mulvey, E. P., Shaw, E. C. (1995). Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models. Psychological Bulletin, 118(3), 392404.CrossRefGoogle ScholarPubMed
Gatsonis, C., Sampson, A. R. (1989). Multiple correlation: Exact power and sample size calculations. Psychological Bulletin, 106, 516524.CrossRefGoogle ScholarPubMed
Graham, J. W. (2012). Missing data: Analysis and design, New York, NY: Springer.CrossRefGoogle Scholar
Greene, W. (2007). Econometric analysis, Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Helseth, S. A., Waschbusch, D. A., Gnagy, E. M., Onyango, A. N., Burrows-MacLean, L., Fabiano, G. A., Pelham, W. E. (2015). Effects of behavioral and pharmacological therapies on peer reinforcement of deviancy in children with ADHD-only, ADHD and conduct problems, and controls. Journal of Consulting and Clinical Psychology, 83(2), 280292.CrossRefGoogle ScholarPubMed
Hilbe, J. M. (2007). Negative binomial regression, Cambridge: New York, NY.CrossRefGoogle Scholar
Hittner, J. B., Owens, E. C., & Swickert, R. J. (2016). Influence of social settings on risky sexual behavior. SAGE Open, 6(1). https://doi.org/10.1177/2158244016629187.CrossRefGoogle Scholar
Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35(1), 73101.CrossRefGoogle Scholar
Huber, P. J., Ronchetti, E. M. (2009). Robust statistics, New York, NY: Wiley.CrossRefGoogle Scholar
Imbens, G. W., Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical sciences, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Jensen, J. L. W. V. (1906). Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Mathematica, 30, 175193.CrossRefGoogle Scholar
Johns, G., Al Hajj, R. (2016). Frequency versus time lost measures of absenteeism: Is the voluntariness distinction an urban legend. Journal of Organizational Behavior, 37(3), 456479.CrossRefGoogle Scholar
Johnson, P. O., Neyman, J. (1936). Tests of certain linear hypotheses and their application to some educational problems. Statistical Research Memoirs, 1, 5793.Google Scholar
Kenny, T. E., Van Wijk, M., Singleton, C., Carter, J. C. (2018). An examination of the relationship between binge eating disorder and insomnia symptoms. European Eating Disorders Review, 26(3), 186196.CrossRefGoogle ScholarPubMed
Kröhne, U. (2009). Estimation of average causal effects in quasi-experimental designs: Non-linear constraints in structural equation models. Unpublished doctoral dissertation, Friedrich-Schiller-University Jena, Germany.Google Scholar
Layland, E. K., Calhoun, B. H., Russell, M. A., & Maggs, J. L. (2018). Is alcohol and other substance use reduced when college students attend alcohol-free programs? Evidence from a measurement burst design before and after legal drinking age. Prevention Science, 1–11. https://doi.org/10.1007/s11121-018-0877-6.CrossRefGoogle Scholar
Little, R. J. A., Rubin, D. B. (2002). Statistical analysis with missing data, 2Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Liu, Y., West, S. G., Levy, R., Aiken, L. S. (2017). Tests of simple slopes in multiple regression models with an interaction: Comparison of four approaches. Multivariate Behavioral Research, 52(4), 120.CrossRefGoogle ScholarPubMed
Long, J. S. (1997). Advanced quantitative techniques in the social sciences. Regression models for categorical and limited dependent variables, Thousand Oaks, CA: Sage Publications.Google Scholar
Lord, D. (2006). Modeling motor vehicle crashes using Poisson-gamma models: Examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter. Accident Analysis and Prevention, 38(4), 751766.CrossRefGoogle ScholarPubMed
Macdonald, K., Germine, L., Anderson, A., Christodoulou, J., McGrath, L. M. (2017). Dispelling the myth: Training in education or neuroscience decreases but does not eliminate beliefs in neuromyths. Frontiers in Psychology, 8, 1314.CrossRefGoogle Scholar
Mayer, A., Dietzfelbinger, L., Rosseel, Y., Steyer, R. (2016). The EffectLiteR approach for analyzing average and conditional effects. Multivariate Behavioral Research, 51, 374391.CrossRefGoogle ScholarPubMed
Mayer, A., Thoemmes, F., Rose, N., Steyer, R., West, S. G. (2014). Theory and analysis of total, direct and indirect causal effects. Multivariate Behavioral Research, 49(5), 425442.CrossRefGoogle ScholarPubMed
Molenberghs, G., Fitzmaurice, G., Kenward, M. G., Tsiatis, A., & Verbeke, G. (Eds.). (2014). Handbook of missing data methodology. Boca Raton, FL: CRC Press. https://doi.org/10.1201/b17622.CrossRefGoogle Scholar
Muench, F., van Stolk-Cooke, K., Kuerbis, A., Stadler, G., Baumel, A., Shao, S., Morgenstern, J. (2017). A randomized controlled pilot trial of different mobile messaging interventions for problem drinking compared to weekly drink tracking. PLoS ONE, 12(2), e0167900.CrossRefGoogle ScholarPubMed
Nagengast, B. (2006). Standard errors of ACE estimates: Comparing adjusted group means against the adjusted grand mean. A simulation study. Unpublished diploma thesis, Friedrich-Schiller-University Jena, Germany.Google Scholar
Ng, V. K. Y., Cribbie, R. A. (2016). Using the gamma generalized linear model for modeling continuous, skewed and heteroscedastic outcomes in psychology. Current Psychology, 36(2), 111.Google Scholar
Pelham, WE Jr, Fabiano, G. A., Waxmonsky, J. G., Greiner, A. R., Gnagy, E. M., Pelham, WE III, Murphy, S. A. (2016). Treatment sequencing for childhood ADHD: A multiple-randomization study of adaptive medication and behavioral interventions. Journal of Clinical Child & Adolescent Psychology, 45(4), 396415.CrossRefGoogle ScholarPubMed
Precht, L., Keinath, A., Krems, J. F. (2017). Effects of driving anger on driver behavior—Results from naturalistic driving data. Transportation Research Part F: Traffic Psychology and Behaviour, 45, 7592.CrossRefGoogle Scholar
R Core Team. (2018). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved October 06, 2018, from http://www.R-project.org/.Google Scholar
Raykov, T., Marcoulides, G. A. (2004). Using the delta method for approximate interval estimation of parameter functions in SEM. Structural Equation Modeling, 11, 621637.CrossRefGoogle Scholar
Rencher, A. C., Schaalje, G. B. (2007). Linear models in statistics, 2New York, NY: Wiley.CrossRefGoogle Scholar
Rosenbaum, P. R. (2007). Interference between units in randomized experiments. Journal of the American Statistical Association, 102(477), 191200.CrossRefGoogle Scholar
Rosset, S., & Tibshirani, R. J. (2018). From fixed-X to random-X regression: Bias-variance decompositions, covariance penalties, and prediction error estimation. Journal of the American Statistical Association. https://doi.org/10.1080/01621459.2018.1424632.CrossRefGoogle Scholar
Sagarin, B. J., West, S. G., Ratnikov, A., Homan, W. K., Ritchie, T. D., Hansen, E. J. (2014). Treatment non-compliance in randomized experiments: Statistical approaches and design issues. Psychological Methods, 19(3), 317333.CrossRefGoogle Scholar
Sampson, A. R. (1974). A tale of two regressions. Journal of the American Statistical Association, 69, 682689.CrossRefGoogle Scholar
Schaumberg, R. L., Flynn, F. J. (2017). Clarifying the link between job satisfaction and absenteeism: The role of guilt proneness. Journal of Applied Psychology, 102(6), 982.CrossRefGoogle ScholarPubMed
Schrimshaw, E. W., Antebi-Gruszka, N., & Downing, J., M J. (2016). Viewing of internet-based sexually explicit media as a risk factor for condomless anal sex among men who have sex with men in four US cities. PLoS ONE, 11(4). https://doi.org/10.1371/journal.pone.0154439.CrossRefGoogle Scholar
Shadish, W. R., Cook, T. D., Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference, Boston, MA: Houghton Mifflin.Google Scholar
Steyer, R., Nagel, W. (2017). Probability and conditional expectation, Somerset, NJ: Wiley.Google Scholar
Supplementary material: File

Kiefer and Mayer Supplementary material

Kiefer and Mayer Supplementary material
Download Kiefer and Mayer Supplementary material(File)
File 292.4 KB