Hostname: page-component-55f67697df-2z2hb Total loading time: 0 Render date: 2025-05-08T16:26:24.005Z Has data issue: false hasContentIssue false

As reported by P. Martinková, & A. Hladká, ((Computational Aspects of Psychometric Methods: With R. Boca Raton, CRC Press, FL, 2023). Computational Aspects of Psychometric Methods: With R.. Boca Raton, FL: CRC Press.

Review products

As reported by P. Martinková, & A. Hladká, ((Computational Aspects of Psychometric Methods: With R. Boca Raton, CRC Press, FL, 2023). Computational Aspects of Psychometric Methods: With R.. Boca Raton, FL: CRC Press.

Published online by Cambridge University Press:  01 January 2025

Zhiqing Lin
Affiliation:
School of English Studies Shanghai International Studies University

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Review
Copyright
Copyright © 2024 The Author(s), under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

rkner, P.-C. (2021). Bayesian item response modeling in R with brms and Stan. Journal of Statistical Software,100(5), 1 - 54. https://doi.org/10.18637/jss.v100.i05.CrossRefGoogle Scholar
rkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software,80(1), 1-28. https://doi.org/10.18637/jss.v080.i01.Google Scholar
Cai, L., Thissen, D., & du Toit, S. (2011). IRTPRO version 2: Flexible, multidimensional, multiple categorical IRT modeling [Computer software manual]. Chicago, IL.Google Scholar
Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software,48(6), 1 - 29. https://doi.org/10.18637/jss.v048.i06.Google Scholar
Choi, Y.-J., & Asilkalkan, A. (2019). R packages for item response theory analysis: Descriptions and features. Measurement: Interdisciplinary Research and Perspectives,17(3), 168-175. https://doi.org/10.1080/15366367.2019.1586404.CrossRefGoogle Scholar
De Boeck, P. (2004). Explanatory item response models: A generalized linear and nonlinear approach. Berlin: Springer Science & Business Media.CrossRefGoogle Scholar
Desjardins, C. D., & Bulut, O. (2018). Handbook of educational measurement and psychometrics using R. Boca Raton: CRC Press.CrossRefGoogle Scholar
Fox, J.P.Bayesian item response modeling: Theory and applications 2010 New YorkSpringer.CrossRefGoogle Scholar
Givens, G.H., Hoeting, J.A.Computational statistics 2012 2Hoboken, N.J (Eds.),Wiley.CrossRefGoogle Scholar
Linacre, J. M. (2022). Winsteps®(Version 5.3.0) [Computer Software]. Portland, Oregon: Winsteps.com. Available from https://www.winsteps.com/.Google Scholar
Mair, PModern psychometrics with R 2018 New YorkSpringer International Publishing.CrossRefGoogle Scholar
Martinková, P, Hladká, AComputational Aspects of Psychometric Methods: With R 2023 Boca Raton, FLCRC Press.CrossRefGoogle Scholar
Price, L.R.Psychometric methods: Theory into practice 2016 New YorkGuilford Press.Google Scholar
Rizopoulos, D. (2006). ltm: An R package for latent variable modeling and item response analysis. Journal of Statistical Software,17(5), 1 - 25. https://doi.org/10.18637/jss.v017.i05.CrossRefGoogle Scholar
Von Davier, A. A., Mislevy, R. J., & Hao, J. (Eds.). (2021). Computational psychometrics: New methodologies for a new generation of digital learning and assessment. Cham, Switzerland: Springer Nature.Google Scholar
Von Davier, M., & Lee, Y.-S. (Eds.). (2019). Handbook of diagnostic classification models: Models and model extensions, applications, software packages. Berlin: Springer International Publishing.CrossRefGoogle Scholar