Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T15:32:16.039Z Has data issue: false hasContentIssue false

Analytic Standard Errors for Exploratory Process Factor Analysis

Published online by Cambridge University Press:  01 January 2025

Guangjian Zhang*
Affiliation:
University of Notre Dame
Michael W. Browne
Affiliation:
The Ohio State University
Anthony D. Ong
Affiliation:
Cornell University
Sy Miin Chow
Affiliation:
The Pennsylvania State University
*
Requests for reprints should be sent to Guangjian Zhang, Psychology Department, Haggar Hall, University of Notre Dame, Notre Dame, IN 46556, USA. E-mail: [email protected]

Abstract

Exploratory process factor analysis (EPFA) is a data-driven latent variable model for multivariate time series. This article presents analytic standard errors for EPFA. Unlike standard errors for exploratory factor analysis with independent data, the analytic standard errors for EPFA take into account the time dependency in time series data. In addition, factor rotation is treated as the imposition of equality constraints on model parameters. Properties of the analytic standard errors are demonstrated using empirical and simulated data.

Type
Original Paper
Copyright
Copyright © 2013 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brockwell, P.J., Davis, R.A. (1991). Time series: theory and methods, (2nd ed.). New York: SpringerCrossRefGoogle Scholar
Browne, M.W. (1982). Covariance structures. In Hawkins, D.M. (Eds.), Topics in applied multivariate analysis, Cambridge: Cambridge University Press 72141CrossRefGoogle Scholar
Browne, M.W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical & Statistical Psychology, 37, 6283CrossRefGoogle ScholarPubMed
Browne, M.W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111150CrossRefGoogle Scholar
Browne, M.W., Cudeck, R., Tateneni, K., & Mels, G. (2008). CEFA: comprehensive exploratory factor analysis. Retrieved from http://faculty.psy.ohio-state.edu/browne/. Google Scholar
Browne, M.W., Du Toit, S. (1992). Automated fitting of nonstandard models. Multivariate Behavioral Research, 27, 269300CrossRefGoogle ScholarPubMed
Browne, M.W., Nesselroade, J.R. (2005). Representing psychological processes with dynamic factor models: some promising uses and extensions of ARMA time series models. In Maydeu-Olivares, A., McArdle, J.J. (Eds.), Advances in psychometrics: a festschrift for Roderick P. McDonald, Mahwah: Erlbaum 415452Google Scholar
Browne, M.W., Zhang, G. (2007). Developments in the factor analysis of individual time series. In Cudeck, R., MacCallum, R.C. (Eds.), Factor analysis at 100: historical developments and future directions, Mahwah: Lawrence Erlbaum Associates 265291Google Scholar
Browne, M.W., & Zhang, G. (2010). DyFA 3.00 user guide. Retrieved from http://quantrm2.psy.ohiostate.edu/browne/. Google Scholar
Chow, S.-M., Nesselroade, J., Shifren, K., McArdle, J.J. (2004). Dynamic structure of emotions among individuals with Parkinson’s disease. Structural Equation Modeling, 11, 560582CrossRefGoogle Scholar
Crawford, C.B., Ferguson, G.A. (1970). A general rotation criterion and its use in orthogonal rotation. Psychometrika, 35, 321332CrossRefGoogle Scholar
Cudeck, R. (1989). Analysis of correlation matrices using covariance structure models. Psychological Bulletin, 105, 317327CrossRefGoogle Scholar
Cudeck, R., O’Dell, L.L. (1994). Applications of standard error estimates in unrestricted factor analysis: significance tests for factor loadings and correlations. Psychological Bulletin, 115, 475487CrossRefGoogle ScholarPubMed
Du Toit, S., Browne, M.W. (2007). Structural equation modeling of multivariate time series. Multivariate Behavioral Research, 42, 67101CrossRefGoogle ScholarPubMed
Ferguson, T.S. (1996). A course in large sample theory, Boca Raton: Chapman & Hall/CRCCrossRefGoogle Scholar
Ferrer, E., Nesselroade, J.R. (2003). Modeling affective process in dyadic relations via dynamic factor analysis. Emotion, 3, 344360CrossRefGoogle ScholarPubMed
Graybill, F.A. (1983). Matrices with applications in statistics, (2nd ed.). Belmont: WadsworthGoogle Scholar
Hamaker, E.L., Dolan, C.V., Molenaar, P.C.M. (2005). Statistical modeling of the individual: rationale and application of multivariate stationary time series analysis. Multivariate Behavioral Research, 40, 207233CrossRefGoogle ScholarPubMed
Hamilton, J.D. (1994). Time series analysis, Princeton: Princeton University PressCrossRefGoogle Scholar
Harvey, A.C. (1989). Forecasting, structural time series models and the Kalman filter, Cambridge: Cambridge University PressGoogle Scholar
Harvey, A.C. (1993). Time series models, (2nd ed.). Cambridge: MIT PressGoogle Scholar
Jennrich, R.I. (1973). Standard errors for obliquely rotated factor loadings. Psychometrika, 38, 593604CrossRefGoogle Scholar
Jennrich, R.I. (2007). Rotation methods, algorithms, and standard errors. In Cudeck, R., MacCallum, R.C. (Eds.), Factor analysis at 100: historical developments and future directions, Mahwah: Lawrence Erlbaum Associates 315335Google Scholar
Little, T.D., Cunningham, W.A., Shahar, G., Widaman, K.F. (2002). To parcel or not to parcel: exploring the question, weighting the merits. Structural Equation Modeling, 9, 151173CrossRefGoogle Scholar
Lütkepohl, H. (2007). New introduction to multiple time series analysis, New York: SpringerGoogle Scholar
Molenaar, P.C.M. (1985). A dynamic factor analysis model for the analysis of multivariate time series. Psychometrika, 50, 181202CrossRefGoogle Scholar
Molenaar, P.C.M., Nesselroade, J.R. (1998). A comparison of pseudo-maximum likelihood and asymptotically distribution-free dynamic factor analysis parameter estimation in fitting covariance-structure models to block-Toeplitz matrices representing single subject multivariate time series. Multivariate Behavioral Research, 33, 313342CrossRefGoogle ScholarPubMed
Molenaar, P.C.M., Nesselroade, J.R. (2001). Rotation in the dynamic factor modeling of multivariate stationary time series. Psychometrika, 66, 99107CrossRefGoogle Scholar
Nesselroade, J.R., McArdle, J.J., Aggen, S.H., Meyers, J.M. (2002). Dynamic factor analysis models for representing process in multivariate time-series. In Moskowitz, D., Hershberger, S.L. (Eds.), Modeling intraindividual variability with repeated measures data: methods and applications, Mahwah: Erlbaum 235265Google Scholar
Newey, W.K., MacFadden, D. (1994). Large sample estimation and hypothesis testing. Handbook of Econometrics, 4, 21132245Google Scholar
Pennel, R. (1972). Routinely computable confidence intervals for factor loadings using the “jackknife”. British Journal of Mathematical & Statistical Psychology, 25, 107114CrossRefGoogle Scholar
Pringle, R.M., Rayner, A.A. (1970). Expressions for generalized inverses of a bordered matrix with application to the theory of constrained linear models. SIAM Review, 12, 107114CrossRefGoogle Scholar
Pringle, R.M., Rayner, A.A. (1971). Generalized inverse matrices with applications to statistics, London: GriffinGoogle Scholar
Shapiro, A. (1984). Asymptotic theory of overparameterized structural models. Journal of the American Statistical Association, 81, 142149CrossRefGoogle Scholar
Shapiro, A. (1984). A note on the consistency of estimators in the analysis of moment structures. British Journal of Mathematical & Statistical Psychology, 37, 8488CrossRefGoogle Scholar
Tateneni, K. (1998). Use of automatic and numerical differentiation in the estimation of asymptotic standard errors in exploratory factor analysis. Doctoral dissertation, Ohio State University, Columbus, OH. Google Scholar
Watson, M.W., Engle, R.F. (1983). Alternative algorithms for the estimation of dynamic factor analysis, mimic and varying coefficient regression models. Journal of Econometrics, 23, 385400CrossRefGoogle Scholar
White, H. (1980). Using least squares to approximate unknown regression functions. International Economic Review, 21, 149170CrossRefGoogle Scholar
White, H. (1981). Consequences and detection of misspecified nonlinear regression models. Journal of the American Statistical Association, 76, 419443CrossRefGoogle Scholar
White, H., Domowitz, I. (1984). Nonlinear regression with dependent observations. Econometrica, 52, 143161CrossRefGoogle Scholar
Yuan, K., Hayashi, K. (2006). Standard errors in covariance structure models: asymptotics versus bootstrap. British Journal of Mathematical & Statistical Psychology, 59, 397417CrossRefGoogle ScholarPubMed
Zhang, G., Browne, M.W. (2010). Bootstrap standard error estimates in dynamic factor analysis. Multivariate Behavioral Research, 45, 453482CrossRefGoogle ScholarPubMed
Zhang, G., Browne, M.W. (2010). Dynamic factor analysis with ordinal variables. In Chow, S.-m., Ferrer, E., Hsieh, F. (Eds.), Statistical methods for modeling human dynamics: an interdisciplinary dialogue, New York: Taylor & Francis 241263Google Scholar
Zhang, G., Chow, S., Ong, A. (2011). A sandwich-type standard error estimator of SEM models with single time series. Psychometrika, 76, 7796CrossRefGoogle Scholar
Zhang, G., Preacher, K.J., Luo, S. (2010). Bootstrap confidence intervals for ordinary least squares factor loadings and correlations in exploratory factor analysis. Multivariate Behavioral Research, 45, 104134CrossRefGoogle ScholarPubMed