Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T16:15:06.819Z Has data issue: false hasContentIssue false

An Investigation of Hierarchical Bayes Procedures in Item Response Theory

Published online by Cambridge University Press:  01 January 2025

Seock-Ho Kim*
Affiliation:
University of Wisconsin—Madison
Allan S. Cohen
Affiliation:
University of Wisconsin—Madison
Frank B. Baker
Affiliation:
University of Wisconsin—Madison
Michael J. Subkoviak
Affiliation:
University of Wisconsin—Madison
Tom Leonard
Affiliation:
University of Wisconsin—Madison
*
Requests for reprints should be sent to Seock-Ho Kim, Testing and Evaluation, 1025 West Johnson Street, Madison, WI 53706.

Abstract

Hierarchical Bayes procedures for the two-parameter logistic item response model were compared for estimating item and ability parameters. Simulated data sets were analyzed via two joint and two marginal Bayesian estimation procedures. The marginal Bayesian estimation procedures yielded consistently smaller root mean square differences than the joint Bayesian estimation procedures for item and ability estimates. As the sample size and test length increased, the four Bayes procedures yielded essentially the same result.

Type
Original Paper
Copyright
Copyright © 1994 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors wish to thank the Editor and anonymous reviewers for their insightful comments and suggestions.

References

Al-Karni, A. (1990). The impact of test structure on Bayesian test analysis. Unpublished doctoral dissertation, University of Wisconsin—Madison.Google Scholar
Baker, F. B. (1982). GENIRV: A program to generate item response vectors, Madison, WI: University of Wisconsin—Madison, Laboratory of Experimental Design.Google Scholar
Baker, F. B., Al-Karni, A., Al-Dosary, I. M. (1991). EQUATE: A computer program for the test characteristic curve method of IRT equating. Applied Psychological Measurement, 15, 7878.CrossRefGoogle Scholar
Berger, J. O. (1985). Statistical decision theory and Bayesian analysis 2nd ed.,, New York: Springer-Verlag.CrossRefGoogle Scholar
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee's ability. In Lord, F. M., Novick, M. R. (Eds.), Statistical theories of mental test scores (pp. 395479). Reading, MA: Addison-Wesley.Google Scholar
Bock, R. D., Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Dempster, A. P., Laird, N. M., Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39, 138.CrossRefGoogle Scholar
Gifford, J. A., Swaminathan, H. (1990). Bias and the effect of priors in Bayesian estimation of parameters of item response models. Applied Psychological Measurement, 14, 3343.CrossRefGoogle Scholar
Good, I. J. (1983). The robustness of a hierarchical model for multinomials and contingency tables. In Box, G. E. P., Leonard, T., Wu, C.-F. (Eds.), Scientific inference, data analysis, and robustness (pp. 191211). New York: Academic Press.CrossRefGoogle Scholar
Harwell, M. R., Baker, F. B. (1991). The use of prior distributions in marginalized Bayesian item parameter estimation: A didactic. Applied Psychological Measurement, 15, 375389.CrossRefGoogle Scholar
Leonard, T. (1982). Comment on the paper by Lejeune and Faulkenberry. Journal of the American Statistical Association, 77, 657658.Google Scholar
Leonard, T., Hsu, J. S. J., Tsui, K. W. (1989). Bayesian marginal inference. Journal of the American Statistical Association, 84, 10511058.CrossRefGoogle Scholar
Leonard, T., Novick, M. R. (1985). Bayesian inference and diagnostics for the three parameter logistic model, Iowa City, IA: The University of Iowa, CADA Research Group.Google Scholar
Lindley, D. V., Smith, A. F. M. (1972). Bayes estimates for the linear model (with discussion). Journal of the Royal Statistical Society, Series B, 34, 141.CrossRefGoogle Scholar
Lord, F. M. (1980). Applications of item response theory to practical testing problems, Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Mislevy, R. J. (1986). Bayes modal estimation in item response models. Psychometrika, 51, 177195.CrossRefGoogle Scholar
Mislevy, R. J., Bock, R. D. (1989). PC-BILOG 3: Item analysis and test scoring with binary logistic models, Mooresville, IN: Scientific Software.Google Scholar
O'Hagan, A. (1976). On posterior joint and marginal modes. Biometrika, 63, 329333.CrossRefGoogle Scholar
Rigdon, S. E., Tsutakawa, R. K. (1983). Parameter estimation in latent trait models. Psychometrika, 48, 567574.CrossRefGoogle Scholar
Seong, T.-J. (1990). Sensitivity of marginal maximum likelihood estimation of item and ability parameters to the characteristics of the prior ability distributions. Applied Psychological Measurement, 14, 299311.CrossRefGoogle Scholar
Stocking, M. L., Lord, F. M. (1983). Developing a common metric in item response theory. Applied Psychological Measurement, 7, 201210.CrossRefGoogle Scholar
Swaminathan, H., Gifford, J. A. (1982). Bayesian estimation in the Rasch model. Journal of Educational Statistics, 7, 175191.CrossRefGoogle Scholar
Swaminathan, H., Gifford, J. A. (1985). Bayesian estimation in the two-parameter logistic model. Psychometrika, 50, 349364.CrossRefGoogle Scholar
Swaminathan, H., Gifford, J. A. (1986). Bayesian estimation in the three-parameter logistic model. Psychometrika, 51, 589601.CrossRefGoogle Scholar
Tierney, L., Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81, 8286.CrossRefGoogle Scholar
Tsutakawa, R. K., Johnson, J. C. (1990). The effect of uncertainty of item parameter estimation on ability estimates. Psychometrika, 55, 371390.CrossRefGoogle Scholar
Tsutakawa, R. K., Lin, H. Y. (1986). Bayesian estimation of item response curves. Psychometrika, 51, 251267.CrossRefGoogle Scholar