Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-07T13:44:49.698Z Has data issue: false hasContentIssue false

An Exploratory Diagnostic Model for Ordinal Responses with Binary Attributes: Identifiability and Estimation

Published online by Cambridge University Press:  01 January 2025

Steven Andrew Culpepper*
Affiliation:
University of Illinois at Urbana-Champaign
*
Correspondence should be made to Steven Andrew Culpepper, Department of Statistics, University of Illinois at Urbana-Champaign, 725 South Wright Street, Champaign, IL61820, USA. Email:[email protected]

Abstract

Diagnostic models (DMs) provide researchers and practitioners with tools to classify respondents into substantively relevant classes. DMs are widely applied to binary response data; however, binary response models are not applicable to the wealth of ordinal data collected by educational, psychological, and behavioral researchers. Prior research developed confirmatory ordinal DMs that require expert knowledge to specify the underlying structure. This paper introduces an exploratory DM for ordinal data. In particular, we present an exploratory ordinal DM, which uses a cumulative probit link along with Bayesian variable selection techniques to uncover the latent structure. Furthermore, we discuss new identifiability conditions for structured multinomial mixture models with binary attributes. We provide evidence of accurate parameter recovery in a Monte Carlo simulation study across moderate to large sample sizes. We apply the model to twelve items from the public-use, Early Childhood Longitudinal Study, Kindergarten Class of 1998–1999 approaches to learning and self-description questionnaire and report evidence to support a three-attribute solution with eight classes to describe the latent structure underlying the teacher and parent ratings. In short, the developed methodology contributes to the development of ordinal DMs and broadens their applicability to address theoretical and substantive issues more generally across the social sciences.

Type
Original Paper
Copyright
Copyright © 2019 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, J. H.. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational and Behavioral Statistics, 17 (3) 251269. CrossRefGoogle Scholar
Albert, J. H., &Chib, S.. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88 (422) 669679. CrossRefGoogle Scholar
Allman, E. S.,Matias, C., &Rhodes, JA.. (2009). Identifiability of parameters in latent structure models with many observed variables. Annals of Statistics, 37 30993132. CrossRefGoogle Scholar
Bao, J., &Hanson, TE.. (2015). Bayesian nonparametric multivariate ordinal regression. Canadian Journal of Statistics, 43 (3) 337357. CrossRefGoogle Scholar
Béguin, A. A., &Glas, C. A.. (2001). MCMC estimation and some model-fit analysis of multidimensional IRT models. Psychometrika, 66 (4) 541561. CrossRefGoogle Scholar
Chen, J., &de la Torre, J.. (2013). A general cognitive diagnosis model for expert-defined polytomous attributes. Applied Psychological Measurement, 37 (6) 419437. CrossRefGoogle Scholar
Chen, J., &de la Torre, J.. (2018). Introducing the general polytomous diagnosis modeling framework. Frontiers in Psychology, 9 19. CrossRefGoogle ScholarPubMed
Chen, Y., & Culpepper, S. A. (2018). A multivariate probit model for learning trajectories with application to classroom assessment. In Paper presentation at the international meeting of the psychometric society, New York.Google Scholar
Chen, Y.,Culpepper, S. A.,Chen, Y.,Douglas, J.. (2018). Bayesian estimation of the DINA Q-matrix. Psychometrika, 83 89108. 28861685 CrossRefGoogle ScholarPubMed
Chen, Y., Culpepper, S. A., & Liang , F. (2018). Beyond the Q-matrix: A general approach to cognitive diagnostic models. In Paper presentation at the international meeting of the psychometric society, New York. Google Scholar
Chen, Y.,Culpepper, S. A.,Wang, S., &Douglas, JA.. (2018). A hidden Markov model for learning trajectories in cognitive diagnosis with application to spatial rotation skills. Applied Psychological Measurement, 42 523. CrossRefGoogle ScholarPubMed
Chen, Y.,Liu, J.,Xu, G., &Ying, Z.. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110 (510) 850866. 26294801 CrossRefGoogle Scholar
Cowles, M. K.. (1996). Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models. Statistics and Computing, 6 (2) 101111. CrossRefGoogle Scholar
Culpepper, S. A.. (2015). Bayesian estimation of the DINA model with Gibbs sampling. Journal of Educational and Behavioral Statistics, 40 (5) 454476. CrossRefGoogle Scholar
Culpepper, S. A.. (2016). Revisiting the 4-parameter item response model: Bayesian estimation and application. Psychometrika, 81 (4) 11421163. CrossRefGoogle ScholarPubMed
Culpepper, S. A.. (2019). Estimating the cognitive diagnosis Q matrix with expert knowledge: Application to the fraction-subtraction dataset. Psychometrika, 84 333357. CrossRefGoogle Scholar
Culpepper, S. A., &Chen, Y.. (2018). Development and application of an exploratory reduced reparameterized unified model. Journal of Educational and Behavioral Statistics, 44 324. CrossRefGoogle Scholar
DeCarlo, L. T.. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35 (1) 826. CrossRefGoogle Scholar
de la Torre, J.. (2011). The generalized DINA model framework. Psychometrika, 76 (2) 179199. CrossRefGoogle Scholar
de la Torre, J., &Douglas, JA.. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69 (3) 333353. CrossRefGoogle Scholar
de la Torre, J., &Douglas, JA.. (2008). Model evaluation and multiple strategies in cognitive diagnosis: An analysis of fraction subtraction data. Psychometrika, 73 (4) 595624. CrossRefGoogle Scholar
DeYoreo, M., &Kottas, A.. (2018). Bayesian nonparametric modeling for multivariate ordinal regression. Journal of Computational and Graphical Statistics, 27 (1) 7184. CrossRefGoogle Scholar
DeYoreo, M.,Reiter, J. P., &Hillygus, D. S.. (2017). Bayesian mixture models with focused clustering for mixed ordinal and nominal data. Bayesian Analysis, 12 (3) 679703. CrossRefGoogle Scholar
Fang, G.,Liu, J., &Ying, Z.. (2019). On the identifiability of diagnostic classification models. Psychometrika, 84 1940. 30673967 CrossRefGoogle ScholarPubMed
Green, B. F.. (1951). A general solution for the latent class model of latent structure analysis. Psychometrika, 16 (2) 151166. CrossRefGoogle ScholarPubMed
Haberman, S. J.,von Davier, M., &Lee, Y-. H.. (2008). Comparison of multidimensional item response models: Multivariate normal ability distributions versus multivariate polytomous ability distributions. ETS Research Report Series, 2008 (2) 125. CrossRefGoogle Scholar
Henson, R. A., & Templin, J.. (2007). Importance of Q-matrix construction and its effects cognitive diagnosis model results. In Annual meeting of the national council on measurement in education, Chicago, IL. Google Scholar
Henson, R. A.,Templin, J. L., &Willse, J. T.. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74 (2) 191210. CrossRefGoogle Scholar
Hojtink, H., &Molenaar, IW.. (1997). A multidimensional item response model: Constrained latent class analysis using the Gibbs sampler and posterior predictive checks. Psychometrika, 62 (2) 171189. CrossRefGoogle Scholar
Jain, S., &Neal, RM.. (2004). A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. Journal of Computational and Graphical Statistics, 13 (1) 158182. CrossRefGoogle Scholar
Karelitz, T. M.. (2004). Ordered category attribute coding framework for cognitive assessments. Unpublished doctoral dissertation, University of Illinois at Urbana-Champaign. Google Scholar
Kaya, Y., &Leite, W. L.. (2017). Assessing change in latent skills across time with longitudinal cognitive diagnosis modeling: An evaluation of model performance. Educational and Psychological Measurement, 77 (3) 369388. CrossRefGoogle ScholarPubMed
Kottas, A.,Müller, P., &Quintana, F.. (2005). Nonparametric Bayesian modeling for multivariate ordinal data. Journal of Computational and Graphical Statistics, 14 (3) 610625. CrossRefGoogle Scholar
Kruskal, J. B.. (1976). More factors than subjects, tests and treatments: An indeterminacy theorem for canonical decomposition and individual differences scaling. Psychometrika, 41 (3) 281293. CrossRefGoogle Scholar
Kruskal, J. B.. (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and Its Applications, 18 (2) 95138. CrossRefGoogle Scholar
Li, F.,Cohen, A.,Bottge, B., &Templin, J.. (2016). A latent transition analysis model for assessing change in cognitive skills. Educational and Psychological Measurement, 76 (2) 181204. CrossRefGoogle ScholarPubMed
Liu, J.,Xu, G., &Ying, Z.. (2013). Theory of the self-learning Q-matrix. Bernoulli, 19 (5A) 17901817. CrossRefGoogle ScholarPubMed
Liu, R., &Jiang, Z.. (2018). Diagnostic classification models for ordinal item responses. Frontiers in Psychology, 9 112. CrossRefGoogle ScholarPubMed
Ma, W., &de la Torre, J.. (2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69 (3) 253275. CrossRefGoogle ScholarPubMed
Ma, W., &de la Torre, J.. (2019). An empirical Q-matrix validation method for the sequential generalized DINA model. British Journal of Mathematical and Statistical Psychology. https://doi.org/10.1111/bmsp.12156. CrossRefGoogle Scholar
Madison, M. J., &Bradshaw, L. P.. (2018). Assessing growth in a diagnostic classification model framework. Psychometrika, 83 963990. CrossRefGoogle Scholar
McDonald, R. P.. (1962). A note on the derivation of the general latent class model. Psychometrika, 27 (2) 203206. CrossRefGoogle Scholar
Proctor, C. H.. (1970). A probabilistic formulation and statistical analysis of guttman scaling. Psychometrika, 35 (1) 7378. CrossRefGoogle Scholar
Rost, J.. (1988). Rating scale analysis with latent class models. Psychometrika, 53 (3) 327348. CrossRefGoogle Scholar
Rupp, A. A., &Templin, J. L.. (2008). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68 (1) 7896. CrossRefGoogle Scholar
Shute, V. J.,Hansen, E. G., &Almond, R. G.. (2008). You can’t fatten a hog by weighing it-or can you? Evaluating an assessment for learning system called ACED. International Journal of Artificial Intelligence in Education, 18 (4) 289316. Google Scholar
Sinharay, S.,Johnson, M. S., &Stern, H. S.. (2006). Posterior predictive assessment of item response theory models. Applied Psychological Measurement, 30 (4) 298321. CrossRefGoogle Scholar
Templin, J. L. . (2004). Generalized linear mixed proficiency models. Unpublished doctoral dissertation, University of Illinois at Urbana-Champaign.Google Scholar
Templin, J. L., &Henson, R. A.. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11 (3) 28716953706 CrossRefGoogle ScholarPubMed
Templin, J. L.,Henson, R. A.,Templin, S. E., & Roussos, L.. (2008). Robustness of hierarchical modeling of skill association in cognitive diagnosis models. Applied Psychological Measurement, 32 559574. CrossRefGoogle Scholar
Tourangeau, K., Nord, C., , T., Sorongon, A., Hagedorn, M., Daly, P., & Najarian, M.. (2015). Early childhood longitudinal study, kindergarten class of 2010–2011 (ECLS-K:2011), user’s manual for the ECLS-K:2011 kindergarten data file and electronic codebook, public version (NCES 2015-074). U.S. Department of Education. Washington,DC: National Center for Education Statistics.Accessed 19 Apr 2018. Google Scholar
von Davier, M.. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61 (2) 287307. CrossRefGoogle ScholarPubMed
von Davier, M.. (2009). Some notes on the reinvention of latent structure models as diagnostic classification models.. Measurement: Interdisciplinary Research and Perspectives, 7 6774. Google Scholar
Wang, S.,Yang, Y.,Culpepper, S. A., &Douglas, J.. (2017). Tracking skill acquisition with cognitive diagnosis models: A higher-order hidden Markov model with covariates. Journal of Educational and Behavioral Statistics, 43 (1) 5787. CrossRefGoogle Scholar
Xu, G.. (2017). Identifiability of restricted latent class models with binary responses. Annals of Statistics, 45 (2) 675707. CrossRefGoogle Scholar
Xu, G., &Shang, Z.. (2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, 113 (523) 12841295. CrossRefGoogle Scholar
Ye, S.,Fellouris, G.,Culpepper, S. A., &Douglas, J.. (2016). Sequential detection of learning in cognitive diagnosis. British Journal of Mathematical and Statistical Psychology, 69 (2) 139158. 26931602 CrossRefGoogle ScholarPubMed