Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T06:28:19.715Z Has data issue: false hasContentIssue false

Invariant Ordering of Item-Total Regressions

Published online by Cambridge University Press:  01 January 2025

Jesper Tijmstra*
Affiliation:
Utrecht University
David J. Hessen
Affiliation:
Utrecht University
Peter G. M. van der Heijden
Affiliation:
Utrecht University
Klaas Sijtsma
Affiliation:
Tilburg University
*
Requests for reprints should be sent to Jesper Tijmstra, Department of Methodology and Statistics, Faculty of Social Sciences, Utrecht University, PO Box 80140, 3508 TC Utrecht, The Netherlands. E-mail: [email protected]

Abstract

A new observable consequence of the property of invariant item ordering is presented, which holds under Mokken’s double monotonicity model for dichotomous data. The observable consequence is an invariant ordering of the item-total regressions. Kendall’s measure of concordance W and a weighted version of this measure are proposed as measures for this property. Karabatsos and Sheu proposed a Bayesian procedure (Appl. Psychol. Meas. 28:110–125, 2004), which can be used to determine whether the property of an invariant ordering of the item-total regressions should be rejected for a set of items. An example is presented to illustrate the application of the procedures to empirical data.

Type
Original Paper
Copyright
Copyright © 2011 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birnbaum, A. (1968). Some latent trait models and their uses in inferring an examinee’s ability. In Lord, F. M., Novick, M. R. (Eds.), Statistical theories of mental test scores (pp. 397479). Reading: Addison-Wesley.Google Scholar
Dekovic, M. (2003). Aggressive and nonaggressive antisocial behavior in adolescence. Psychological Reports, 93, 610616.CrossRefGoogle ScholarPubMed
Goodman, L.A., Kruskal, W.H. (1954). Measures of association for cross classifications. Journal of the American Statistical Association, 49, 732764.Google Scholar
Hessen, D.J. (2005). Constant latent odds-ratios models and the Mantel-Haenszel null hypothesis. Psychometrika, 70, 497516.CrossRefGoogle Scholar
Karabatsos, G., Sheu, C.-F. (2004). Order-constrained Bayes inference for dichotomous models of unidimensional nonparametric IRT. Applied Psychological Measurement, 28, 110125.CrossRefGoogle Scholar
Kendall, M.G., Babington Smith, B. (1939). The problem of m rankings. The Annals of Mathematical Statistics, 10, 275287.CrossRefGoogle Scholar
Ligtvoet, R., Van der Ark, L.A., Te Marvelde, J.M., Sijtsma, K. (2010). Investigating an invariant item ordering for polytomously scored items. Educational and Psychological Measurement, 70, 578595.CrossRefGoogle Scholar
Mokken, R.J. (1971). A theory and procedure of scale analysis, Berlin: De Gruyter.CrossRefGoogle Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests, Copenhagen: Nielsen and Lydiche.Google Scholar
Rosenbaum, P.R. (1987). Comparing item characteristic curves. Psychometrika, 52, 217233.CrossRefGoogle Scholar
Scheiblechner, H. (2003). Nonparametric IRT: testing the bi-isotonicity of isotonic probabilistic models (ISOP). Psychometrika, 68, 7996.CrossRefGoogle Scholar
Sijtsma, K., Junker, B.W. (1996). A survey of theory and methods of invariant item ordering. British Journal of Mathematical and Statistical Psychology, 49, 79105.CrossRefGoogle ScholarPubMed
Sijtsma, K., Meijer, R.R. (1992). A method for investigating the intersection of item response functions in Mokken’s nonparametric IRT model. Applied Psychological Measurement, 16, 149157.CrossRefGoogle Scholar
Sijtsma, K., Molenaar, I.W. (2002). Introduction to nonparametric item response theory, Thousand Oaks: SAGE Publications.CrossRefGoogle Scholar
Silvapulle, M.J., Sen, P.K. (2005). Constrained statistical inference: inequality, order, and shape restrictions, Hoboken: John Wiley & Sons, Inc..Google Scholar
Spearman, C. (1904). The proof and measurement of association between two things. American Journal of Psychology, 15, 72101.CrossRefGoogle Scholar